Clin Chem Lab Med. 2014 Jan 1;52(1):39-45. doi: 10.1515/cclm-2012-0818.
Non-enzymatic modification of proteins in hyperglycemia is a major proposed mechanism of diabetic complications. Specifically, advanced glycation end products (AGEs) derived from hyperglycemia-induced reactive carbonyl species (RCS) can have pathogenic consequences when they target functionally critical protein residues. Modification of a small number of these critical residues, often undetectable by the methodologies relying on measurements of total AGE levels, can cause significant functional damage. Therefore, detection of specific sites of protein damage in diabetes is central to understanding the molecular basis of diabetic complications and for identification of biomarkers which are mechanistically linked to the disease. The current paradigm of RCS-derived protein damage places a major focus on methylglyoxal (MGO), an intermediate of cellular glycolysis. We propose that glyoxal (GO) is a major contributor to extracellular matrix (ECM) damage in diabetes. Here, we review the current knowledge and provide new data about GO-derived site-specific ECM modification in experimental diabetes.
在高血糖症中,蛋白质的非酶促修饰是糖尿病并发症的主要发生机制。具体而言,由高血糖诱导的活性羰基化合物(RCS)衍生的晚期糖基化终产物(AGE)在靶向功能关键蛋白残基时可能具有致病后果。这些关键残基中的少数残基发生修饰,通常无法通过依赖于总 AGE 水平测量的方法检测到,但会导致显著的功能损伤。因此,在糖尿病中检测蛋白质损伤的特定部位是理解糖尿病并发症分子基础的核心,也是鉴定与疾病有机制联系的生物标志物的关键。目前关于 RCS 衍生的蛋白质损伤的范例主要集中在甲基乙二醛(MGO)上,它是细胞糖酵解的中间产物。我们提出,乙二醛(GO)是糖尿病中细胞外基质(ECM)损伤的主要原因。在这里,我们回顾了目前的知识,并提供了关于实验性糖尿病中 GO 衍生的特定 ECM 修饰的新数据。