EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Phys Rev Lett. 2013 Mar 1;110(9):093601. doi: 10.1103/PhysRevLett.110.093601. Epub 2013 Feb 25.
Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused by using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, when passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behavior is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.
电子涡旋光束携带固有轨道角动量(OAM),在电子显微镜中产生,通过使用磁透镜来控制和聚焦。我们观察到由于 OAM 和磁透镜之间的相互作用而产生的各种旋转现象。首先,与 OAM 和磁场强度成正比的塞曼耦合会导致透镜内部模式叠加的 OAM 独立拉莫尔旋转。其次,当穿过焦平面时,电子束会获得与 OAM 的绝对值有关的附加古伊相位。这导致叠加图像的古伊旋转与 OAM 的符号成正比。拉莫尔和古伊效应的组合可能会导致旋转的相加(或相减),具体取决于 OAM 的符号。这种行为是电子涡旋光束所特有的,没有光学对应物,因为只有带电粒子才会发生拉莫尔旋转。我们的实验结果与最近的理论预测一致。