Suppr超能文献

基于梯度下降的监督多尖峰学习算法在尖峰神经网络中的应用。

A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.

机构信息

Institute of Intelligence Science and Technology, Hohai University, Nanjing 210098, PR China.

出版信息

Neural Netw. 2013 Jul;43:99-113. doi: 10.1016/j.neunet.2013.02.003. Epub 2013 Feb 16.

Abstract

We use a supervised multi-spike learning algorithm for spiking neural networks (SNNs) with temporal encoding to simulate the learning mechanism of biological neurons in which the SNN output spike trains are encoded by firing times. We first analyze why existing gradient-descent-based learning methods for SNNs have difficulty in achieving multi-spike learning. We then propose a new multi-spike learning method for SNNs based on gradient descent that solves the problems of error function construction and interference among multiple output spikes during learning. The method could be widely applied to single spiking neurons to learn desired output spike trains and to multilayer SNNs to solve classification problems. By overcoming learning interference among multiple spikes, our method has high learning accuracy when there are a relatively large number of output spikes in need of learning. We also develop an output encoding strategy with respect to multiple spikes for classification problems. This effectively improves the classification accuracy of multi-spike learning compared to that of single-spike learning.

摘要

我们使用具有时间编码的监督多尖峰学习算法对尖峰神经网络 (SNN) 进行模拟,该算法模拟了生物神经元的学习机制,其中 SNN 输出尖峰序列由触发时间进行编码。我们首先分析了为什么现有的基于梯度下降的 SNN 学习方法难以实现多尖峰学习。然后,我们提出了一种基于梯度下降的新的 SNN 多尖峰学习方法,该方法解决了学习过程中误差函数构建和多个输出尖峰之间干扰的问题。该方法可以广泛应用于单个尖峰神经元,以学习所需的输出尖峰序列,以及多层 SNN,以解决分类问题。通过克服多个尖峰之间的学习干扰,我们的方法在需要学习的输出尖峰数量较多时具有较高的学习准确性。我们还针对分类问题开发了一种多尖峰输出编码策略。与单尖峰学习相比,这有效地提高了多尖峰学习的分类准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验