Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Biol Chem. 2013 May 3;288(18):12967-77. doi: 10.1074/jbc.M112.396796. Epub 2013 Mar 15.
Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.
癌症和增殖细胞表现出对谷氨酰胺衍生碳的需求增加,以支持合成代谢过程。此外,最近的研究表明,异柠檬酸脱氢酶 1(IDH1)和 2(IDH2)的α-酮戊二酸的还原羧化作用是从谷氨酰胺合成柠檬酸的主要来源。NAD(P)H/NAD(P)(+)辅因子在协调三羧酸(TCA)循环中葡萄糖和谷氨酰胺利用方面的作用尚未得到很好的理解,还原羧化反应中 NADPH 的来源仍未得到探索。烟酰胺核苷酸转氢酶(NNT)是一种线粒体酶,可将还原当量从 NADH 转移到 NADPH。在这里,我们表明,NNT 的敲低抑制了谷氨酰胺对 TCA 循环的贡献,并激活了 SkMel5 黑色素瘤细胞中的葡萄糖分解代谢。葡萄糖氧化的增加部分通过丙酮酸羧化酶发生,使 NNT 敲低细胞对葡萄糖剥夺更敏感。重要的是,敲低 NNT 抑制了 SkMel5 和 786-O 肾癌细胞中的还原羧化作用。NNT 的过表达足以刺激谷氨酰胺氧化和还原羧化,而抑制 TCA 循环中的葡萄糖分解代谢。这些观察结果得到了 NAD(P)H/NAD(P)(+)比值受损的支持。我们的发现强调了 NNT 通过氧化还原平衡在调节中心碳代谢中的作用,这需要其他机制来协调底物偏好以维持功能正常的 TCA 循环。