Suppr超能文献

烟酰胺核苷酸转氢酶(NNT)通过辅助因子平衡协调三羧酸(TCA)循环中的还原性羧化作用和葡萄糖分解代谢。

Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Biol Chem. 2013 May 3;288(18):12967-77. doi: 10.1074/jbc.M112.396796. Epub 2013 Mar 15.

Abstract

Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

摘要

癌症和增殖细胞表现出对谷氨酰胺衍生碳的需求增加,以支持合成代谢过程。此外,最近的研究表明,异柠檬酸脱氢酶 1(IDH1)和 2(IDH2)的α-酮戊二酸的还原羧化作用是从谷氨酰胺合成柠檬酸的主要来源。NAD(P)H/NAD(P)(+)辅因子在协调三羧酸(TCA)循环中葡萄糖和谷氨酰胺利用方面的作用尚未得到很好的理解,还原羧化反应中 NADPH 的来源仍未得到探索。烟酰胺核苷酸转氢酶(NNT)是一种线粒体酶,可将还原当量从 NADH 转移到 NADPH。在这里,我们表明,NNT 的敲低抑制了谷氨酰胺对 TCA 循环的贡献,并激活了 SkMel5 黑色素瘤细胞中的葡萄糖分解代谢。葡萄糖氧化的增加部分通过丙酮酸羧化酶发生,使 NNT 敲低细胞对葡萄糖剥夺更敏感。重要的是,敲低 NNT 抑制了 SkMel5 和 786-O 肾癌细胞中的还原羧化作用。NNT 的过表达足以刺激谷氨酰胺氧化和还原羧化,而抑制 TCA 循环中的葡萄糖分解代谢。这些观察结果得到了 NAD(P)H/NAD(P)(+)比值受损的支持。我们的发现强调了 NNT 通过氧化还原平衡在调节中心碳代谢中的作用,这需要其他机制来协调底物偏好以维持功能正常的 TCA 循环。

相似文献

3
Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects.
Cell Rep. 2014 Jun 12;7(5):1679-1690. doi: 10.1016/j.celrep.2014.04.037. Epub 2014 May 22.
5
NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells.
Mol Metab. 2017 Apr 21;6(6):535-547. doi: 10.1016/j.molmet.2017.04.004. eCollection 2017 Jun.
7
Redox control of glutamine utilization in cancer.
Cell Death Dis. 2014 Dec 4;5(12):e1561. doi: 10.1038/cddis.2014.513.
9
A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
Free Radic Biol Med. 2013 Oct;63:446-56. doi: 10.1016/j.freeradbiomed.2013.05.049. Epub 2013 Jun 7.
10
Mitochondrial NAD(P) Transhydrogenase: From Molecular Features to Physiology and Disease.
Antioxid Redox Signal. 2022 May;36(13-15):864-884. doi: 10.1089/ars.2021.0111. Epub 2021 Aug 5.

引用本文的文献

1
Some paradoxes and unresolved aspects of hepatic de novo lipogenesis.
NPJ Metab Health Dis. 2024 Aug 2;2(1):18. doi: 10.1038/s44324-024-00020-7.
2
IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies.
Curr Oncol. 2025 Jan 17;32(1):44. doi: 10.3390/curroncol32010044.
8
Mitochondrial rewiring drives metabolic adaptation to NAD(H) shortage in triple negative breast cancer cells.
Neoplasia. 2023 Jul;41:100903. doi: 10.1016/j.neo.2023.100903. Epub 2023 May 4.
9
Improving translatability of spinal cord injury research by including age as a demographic variable.
Front Cell Neurosci. 2022 Nov 17;16:1017153. doi: 10.3389/fncel.2022.1017153. eCollection 2022.
10

本文引用的文献

3
Nicotinamide nucleotide transhydrogenase (NNT) acts as a novel modulator of macrophage inflammatory responses.
FASEB J. 2012 Aug;26(8):3550-62. doi: 10.1096/fj.11-199935. Epub 2012 May 16.
5
Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation.
J Biol Chem. 2012 Apr 27;287(18):14615-20. doi: 10.1074/jbc.C112.353946. Epub 2012 Mar 22.
6
Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.
Pigment Cell Melanoma Res. 2012 May;25(3):375-83. doi: 10.1111/j.1755-148X.2012.00989.x. Epub 2012 Mar 27.
7
Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells.
Biochim Biophys Acta. 2012 Mar;1817(3):401-9. doi: 10.1016/j.bbabio.2011.12.004. Epub 2011 Dec 16.
8
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19611-6. doi: 10.1073/pnas.1117773108. Epub 2011 Nov 21.
9
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
10
Reductive carboxylation supports growth in tumour cells with defective mitochondria.
Nature. 2011 Nov 20;481(7381):385-8. doi: 10.1038/nature10642.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验