School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, Williamson Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Nanotechnology. 2013 Apr 12;24(14):145603. doi: 10.1088/0957-4484/24/14/145603. Epub 2013 Mar 18.
Luminescent quantum dots were synthesized using bacterially derived selenide (Se(II-)) as the precursor. Biogenic Se(II-) was produced by the reduction of Se(IV) by Veillonella atypica and compared directly against borohydride-reduced Se(IV) for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se(II-) formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se(II-) included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se(II-) is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.
使用细菌衍生的硒化物(Se(II-))作为前体合成了发光量子点。通过 Veillonella atypica 将 Se(IV)还原为生物生成的 Se(II-),并将其与硼氢化还原的 Se(IV)直接进行比较,以通过水合成直接生产谷胱甘肽稳定的 CdSe 和 β-巯基乙醇稳定的 ZnSe 纳米粒子。在相同条件下,生物生成的 Se(II-)形成更小、更窄的尺寸分布的 QD。生物来源的 CdSe 相的生长动力学较慢。从过滤灭菌的生物生成的 Se(II-)中分离出的蛋白质包括先前在密切相关的 Veillonella parvula 中表征的甲基丙二酰辅酶 A 脱羧酶。谷胱甘肽封端的 CdSe 在 S K 边缘的 XAS 分析表明,谷胱甘肽中的硫在结构上掺入到 CdSe 中。还开发了一种基于同步加速器的新型 XAS 技术来跟踪生物和无机硒化物相的成核,并且表明生物生成的 Se(II-)比其无机对应物更稳定并且更能抵抗束诱导的氧化损伤。细菌产生量子点前体提供了一种替代的,“绿色”合成技术,消除了对昂贵,有毒化学物质的需求,并暗示了可能利用硒污染的废物流的可能性。