Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
ACS Chem Neurosci. 2013 Jun 19;4(6):994-1003. doi: 10.1021/cn400032z. Epub 2013 Apr 4.
The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.
氯离子/质子交换器 ClC-3、ClC-4 和 ClC-5 定位于不同的细胞内隔室,并调节其腔内腔酸度。我们使用电生理学结合荧光 pH 值测量来比较这三种转运蛋白的功能。由于 WT ClC-3 在质膜中的表达可以忽略不计,我们去除了一个 N 端保留信号,以便对这种同工型进行标准的电生理特性分析。这种构建体(ClC-313-19A)介导向外整流的耦合 Cl(-)/H(+)反向转运,类似于 ClC-4 和 ClC-5 的特性。此外,ClC-3 还表现出较大的电电容,超过了 ClC-4 和 ClC-5 的非线性电容。在所有三种同工型中,质子谷氨酸的突变(位于蛋白质内部的保守残基)降低了离子转运,但增加了非线性电容。这表明哺乳动物 ClC 转运蛋白的非线性电容以相似的方式受到调节。然而,在研究的同工型之间,这些电容的电压依赖性和幅度差异很大。我们的研究结果表明,ClC-3 主要专门执行不完全的电容非转运循环,ClC-4 是一种有效的偶联转运蛋白,而 ClC-5 则表现出中间表型。数学模型表明,这种功能差异将允许对细胞内隔室内的腔内腔酸化和氯离子浓度进行差异调节。