Suppr超能文献

ClC-3 是一种具有大电压依赖性非线性电容的细胞内氯离子/质子交换体。

ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance.

机构信息

Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.

出版信息

ACS Chem Neurosci. 2013 Jun 19;4(6):994-1003. doi: 10.1021/cn400032z. Epub 2013 Apr 4.

Abstract

The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.

摘要

氯离子/质子交换器 ClC-3、ClC-4 和 ClC-5 定位于不同的细胞内隔室,并调节其腔内腔酸度。我们使用电生理学结合荧光 pH 值测量来比较这三种转运蛋白的功能。由于 WT ClC-3 在质膜中的表达可以忽略不计,我们去除了一个 N 端保留信号,以便对这种同工型进行标准的电生理特性分析。这种构建体(ClC-313-19A)介导向外整流的耦合 Cl(-)/H(+)反向转运,类似于 ClC-4 和 ClC-5 的特性。此外,ClC-3 还表现出较大的电电容,超过了 ClC-4 和 ClC-5 的非线性电容。在所有三种同工型中,质子谷氨酸的突变(位于蛋白质内部的保守残基)降低了离子转运,但增加了非线性电容。这表明哺乳动物 ClC 转运蛋白的非线性电容以相似的方式受到调节。然而,在研究的同工型之间,这些电容的电压依赖性和幅度差异很大。我们的研究结果表明,ClC-3 主要专门执行不完全的电容非转运循环,ClC-4 是一种有效的偶联转运蛋白,而 ClC-5 则表现出中间表型。数学模型表明,这种功能差异将允许对细胞内隔室内的腔内腔酸化和氯离子浓度进行差异调节。

相似文献

1
ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance.
ACS Chem Neurosci. 2013 Jun 19;4(6):994-1003. doi: 10.1021/cn400032z. Epub 2013 Apr 4.
2
Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
J Biol Chem. 2012 Mar 9;287(11):8101-9. doi: 10.1074/jbc.M111.298265. Epub 2012 Jan 20.
4
Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions.
Biophys J. 2011 Mar 2;100(5):1233-41. doi: 10.1016/j.bpj.2011.01.045.
5
A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl/H-Exchanger, Causes Early-Onset Neurodegeneration.
Am J Hum Genet. 2020 Dec 3;107(6):1062-1077. doi: 10.1016/j.ajhg.2020.11.004. Epub 2020 Nov 19.
7
Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5.
Front Physiol. 2015 May 19;6:159. doi: 10.3389/fphys.2015.00159. eCollection 2015.
8
Intracellular proton regulation of ClC-0.
J Gen Physiol. 2008 Jul;132(1):185-98. doi: 10.1085/jgp.200809999.
9
On the mechanism of gating charge movement of ClC-5, a human Cl(-)/H(+) antiporter.
Biophys J. 2012 May 2;102(9):2060-9. doi: 10.1016/j.bpj.2012.03.067.

引用本文的文献

1
Expanding the genetic and phenotypic relevance of CLCN4 variants in neurodevelopmental condition: 13 new patients.
J Neurol. 2024 Aug;271(8):4933-4948. doi: 10.1007/s00415-024-12383-4. Epub 2024 May 17.
2
Genotype-phenotype correlation in CLCN4-related developmental and epileptic encephalopathy.
Hum Genet. 2024 May;143(5):667-681. doi: 10.1007/s00439-024-02668-z. Epub 2024 Apr 5.
3
The PDE4 Inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction.
Calcif Tissue Int. 2024 Apr;114(4):430-443. doi: 10.1007/s00223-024-01191-7. Epub 2024 Mar 14.
4
Distinct ClC-6 and ClC-7 Cl sensitivities provide insight into ClC-7's role in lysosomal Cl homeostasis.
J Physiol. 2023 Dec;601(24):5635-5653. doi: 10.1113/JP285431. Epub 2023 Nov 8.
5
Novel variants in the gene associated with syndromic X-linked intellectual disability.
Front Neurol. 2023 Sep 15;14:1096969. doi: 10.3389/fneur.2023.1096969. eCollection 2023.
6
Chromogranin B (CHGB) is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion.
Front Mol Neurosci. 2023 Jun 26;16:1205516. doi: 10.3389/fnmol.2023.1205516. eCollection 2023.
8
ClC-3 regulates the excitability of nociceptive neurons and is involved in inflammatory processes within the spinal sensory pathway.
Front Cell Neurosci. 2022 Aug 24;16:920075. doi: 10.3389/fncel.2022.920075. eCollection 2022.
9
Chloride Channel-3 (ClC-3) Modifies the Trafficking of Leucine-Rich Repeat-Containing 8A (LRRC8A) Anion Channels.
J Membr Biol. 2023 Apr;256(2):125-135. doi: 10.1007/s00232-022-00271-9. Epub 2022 Nov 2.
10
Regulated Restructuring of Mucins During Secretory Granule Maturation In Vivo.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2209750119. doi: 10.1073/pnas.2209750119. Epub 2022 Oct 17.

本文引用的文献

1
On the mechanism of gating charge movement of ClC-5, a human Cl(-)/H(+) antiporter.
Biophys J. 2012 May 2;102(9):2060-9. doi: 10.1016/j.bpj.2012.03.067.
2
ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
Am J Physiol Cell Physiol. 2012 Jul 1;303(1):C14-23. doi: 10.1152/ajpcell.00145.2011. Epub 2012 Apr 11.
3
Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
J Biol Chem. 2012 Mar 9;287(11):8101-9. doi: 10.1074/jbc.M111.298265. Epub 2012 Jan 20.
4
ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity.
EMBO J. 2011 Jun 1;30(11):2140-52. doi: 10.1038/emboj.2011.137. Epub 2011 Apr 28.
5
Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus.
Nat Neurosci. 2011 Apr;14(4):487-94. doi: 10.1038/nn.2775. Epub 2011 Mar 6.
6
Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions.
Biophys J. 2011 Mar 2;100(5):1233-41. doi: 10.1016/j.bpj.2011.01.045.
7
Proton block of the CLC-5 Cl-/H+ exchanger.
J Gen Physiol. 2010 Jun;135(6):653-9. doi: 10.1085/jgp.201010428.
8
Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger.
FASEB J. 2010 Oct;24(10):3696-705. doi: 10.1096/fj.09-150649. Epub 2010 May 25.
9
The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.
J Biol Chem. 2010 Jul 9;285(28):21689-97. doi: 10.1074/jbc.M110.125971. Epub 2010 May 13.
10
Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.
Science. 2010 Jun 11;328(5984):1398-401. doi: 10.1126/science.1188070. Epub 2010 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验