Suppr超能文献

OH(-) + CH3I 反应的产物通道和原子机制的直接动力学模拟。与实验比较。

Direct dynamics simulations of the product channels and atomistic mechanisms for the OH(-) + CH3I reaction. Comparison with experiment.

机构信息

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.

出版信息

J Phys Chem A. 2013 Aug 15;117(32):7162-78. doi: 10.1021/jp4008027. Epub 2013 Apr 9.

Abstract

Electronic structure and direct dynamics calculations were used to study the potential energy surface and atomic-level dynamics for the OH(-) + CH3I reactions. The results are compared with crossed molecular beam, ion imaging experiments. The DFT/B97-1/ECP/d level of theory gives reaction energetics in good agreement with experiment and higher level calculations, and it was used for the direct dynamics simulations that were performed for reactant collision energies of 2.0, 1.0, 0.5, and 0.05 eV. Five different pathways are observed in the simulations, forming CH3OH + I(-), CH2I(-) + H2O, CH2 + I(-) + H2O, IOH(-) + CH3, and CH3--I--OH. The SN2 first pathway and the proton-transfer second pathway dominate the reaction dynamics. Though the reaction energetics favor the SN2 pathway, the proton-transfer pathway is more important except for the lowest collision energy. The relative ion yield determined from the simulations is in overall good agreement with experiment. Both the SN2 and proton-transfer pathways occur via direct rebound, direct stripping, and indirect mechanisms. Except for the highest collision energy, 70-90% of the indirect reaction for the SN2 pathway occurs via formation of the hydrogen-bonded OH(-)---HCH2I prereaction complex. For the proton-transfer pathway the indirect reaction is more complex with the roundabout mechanism and formation of the OH(-)---HCH2I and CH2I(-)---HOH complexes contributing to the reaction. The majority of the SN2 reaction is direct at 2.0, 1.0, and 0.5 eV, dominated by stripping. At 0.05 eV the two direct mechanisms and the indirect mechanisms have nearly equal contributions. The majority of the proton-transfer pathway is direct stripping at 2.0, 1.0, and 0.5 eV, but the majority of the reaction is indirect at 0.05 eV. The product relative translational energy distributions are in good agreement with experiment for both the SN2 and proton-transfer pathways. For both, direct reaction preferentially transfers the product energy to relative translation, whereas transfer to product vibration is more important for the indirect reactions. For the proton-transfer reactions the velocity scattering angle distribution is peaked in the forward direction and in quite good agreement with experiment. However, for the SN2 reaction, the experimental scattering is isotropic in nature whereas forward scattering dominates the simulation distributions. The implication is that the simulations give too much stripping, which leads to forward scattering. The dynamics for the OH(-) + CH3I SN2 pathway are similar to those found previously for the F(-) + CH3I SN2 reaction.

摘要

采用电子结构和直接动力学计算方法研究了 OH(-) + CH3I 反应的势能面和原子级动力学。研究结果与交叉分子束、离子成像实验进行了比较。DFT/B97-1/ECP/d 理论水平的反应能与实验和更高水平的计算结果吻合较好,并用于模拟反应物碰撞能为 2.0、1.0、0.5 和 0.05 eV 的直接动力学模拟。在模拟中观察到五种不同的反应途径,形成 CH3OH + I(-)、CH2I(-) + H2O、CH2 + I(-) + H2O、IOH(-) + CH3 和 CH3--I--OH。SN2 第一途径和质子转移第二途径主导反应动力学。尽管反应能有利于 SN2 途径,但除了最低碰撞能外,质子转移途径更为重要。模拟确定的相对离子产率与实验总体上吻合较好。SN2 和质子转移途径都通过直接反弹、直接剥离和间接机制发生。除了最高碰撞能外,SN2 途径的间接反应 70-90%通过形成氢键 OH(-)---HCH2I 预反应复合物发生。对于质子转移途径,间接反应更为复杂,迂回机制和 OH(-)---HCH2I 和 CH2I(-)---HOH 复合物的形成都有助于反应。大多数 SN2 反应在 2.0、1.0 和 0.5 eV 时是直接的,主要是剥离。在 0.05 eV 时,两个直接机制和间接机制几乎具有相等的贡献。在 2.0、1.0 和 0.5 eV 时,质子转移途径的大部分反应是直接剥离,但在 0.05 eV 时,大部分反应是间接的。产物相对平移能分布与 SN2 和质子转移途径的实验结果吻合较好。对于两者,直接反应优先将产物能量转移到相对平移,而对于间接反应,转移到产物振动更为重要。对于质子转移反应,速度散射角分布在正向呈峰值,与实验结果非常吻合。然而,对于 SN2 反应,实验散射本质上是各向同性的,而正向散射主导着模拟分布。这意味着模拟中剥离太多,导致正向散射。OH(-) + CH3I SN2 途径的动力学与先前研究的 F(-) + CH3I SN2 反应的动力学相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验