Chitra Loganathan, Boopathy Rathanam
Molecular Biology and Biotechnology Division, DRDO - BU Center for Life Sciences, Bharathiar University, Coimbatore, India.
Br J Pharmacol. 2013 Jul;169(5):1035-47. doi: 10.1111/bph.12179.
High-altitude pulmonary oedema (HAPE) experienced under high-altitude conditions is attributed to mitochondrial redox distress. Hence, hypobaric hypoxia (HH)-induced alteration in expression of mitochondrial biogenesis and dynamics genes was determined in rat lung. Further, such alteration was correlated with expression of mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mtOXPHOS) genes. The prophylactic effect of dexamethasone (DEX) in counteracting the HH-induced mitochondrial distress was used as control to understand adaptation to high-altitude exposure.
Rats pretreated with DEX were exposed to normobaric normoxia (NN) or HH. HH-induced injury was assessed as an increase in lung water content, tissue damage and oxidant generation. Mitochondrial number, mtDNA content and mtOXPHOS activities were measured to determine mitochondrial function. The expression of mitochondrial biogenesis, dynamics and mtOXPHOS genes was studied.
HH-induced lung injury was associated with decreased mitochondrial number, mtDNA content and mtOXPHOS activities. HH exposure decreased the nuclear gene oestrogen-related receptor-α (ERRα), which interacts with PPAR-γ coactivator-1α (PGC-1α) in controlling mitochondrial metabolism. Consequently, mtOXPHOS transcripts are repressed under HH. Further, HH modulated mitochondrial dynamics by decreasing mitofusin 2 (Mfn2) and augmenting fission 1 (Fis1) and dynamin-related protein 1 (Drp1) expression. Nevertheless, DEX treatment under NN (i.e. adaptation to HH) did not affect mitochondrial biogenesis and dynamics, but increased mtOXPHOS transcripts. Further, mtOXPHOS activities increased together with reduced oxidant generation. Also, DEX pretreatment normalized ERRα along with mitochondrial dynamics genes and increased mtOXPHOS transcripts to elicit the mitochondrial function under HH.
HH stress (HAPE)-mediated mitochondrial dysfunction is due to repressed ERRα and mtOXPHOS transcripts. Thus, ERRα-mediated protection of mitochondrial bioenergetics might be the likely candidate required for lung adaptation to HH.
在高海拔条件下发生的高原肺水肿(HAPE)被认为与线粒体氧化还原应激有关。因此,本研究测定了低压低氧(HH)诱导的大鼠肺组织中线粒体生物发生和动力学基因表达的变化。此外,还将这种变化与线粒体DNA(mtDNA)编码的氧化磷酸化(mtOXPHOS)基因的表达进行了关联。以地塞米松(DEX)预防HH诱导的线粒体应激的作用作为对照,以了解对高海拔暴露的适应性。
用DEX预处理的大鼠暴露于常压常氧(NN)或HH环境中。通过肺含水量增加、组织损伤和氧化剂生成来评估HH诱导的损伤。测量线粒体数量、mtDNA含量和mtOXPHOS活性以确定线粒体功能。研究线粒体生物发生、动力学和mtOXPHOS基因的表达。
HH诱导的肺损伤与线粒体数量减少、mtDNA含量和mtOXPHOS活性降低有关。HH暴露降低了核基因雌激素相关受体α(ERRα),该基因在控制线粒体代谢中与PPAR-γ共激活因子-1α(PGC-1α)相互作用。因此,在HH条件下mtOXPHOS转录本受到抑制。此外,HH通过降低线粒体融合蛋白2(Mfn2)并增加分裂蛋白1(Fis1)和动力相关蛋白1(Drp1)的表达来调节线粒体动力学。然而,在NN条件下(即适应HH)进行DEX处理并不影响线粒体生物发生和动力学,但增加了mtOXPHOS转录本。此外,mtOXPHOS活性增加,同时氧化剂生成减少。此外,DEX预处理使ERRα以及线粒体动力学基因恢复正常,并增加了mtOXPHOS转录本,以在HH条件下引发线粒体功能。
HH应激(HAPE)介导的线粒体功能障碍是由于ERRα和mtOXPHOS转录本受到抑制。因此,ERRα介导的线粒体生物能量学保护可能是肺适应HH所需的可能候选因素。