State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China.
Int J Mol Sci. 2013 Mar 19;14(3):6241-58. doi: 10.3390/ijms14036241.
Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer's and type II diabetes. Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregation. In this study, as a first step towards understanding the membrane-mediated hIAPP aggregation, we investigate the atomic details of the initial step of hIAPP-membrane interaction, including the adsorption orientation and conformation of hIAPP monomer at an anionic POPG lipid bilayer by performing all-atom molecular dynamics simulations. We found that hIAPP monomer is quickly adsorbed to bilayer surface, and the adsorption is initiated from the N-terminal residues driven by strong electrostatic interactions of the positively-charged residues K1 and R11 with negatively-charged lipid headgroups. hIAPP binds parallel to the lipid bilayer surface as a stable helix through residues 7-22, consistent with previous experimental study. Remarkably, different simulations lead to the same binding orientation stabilized by electrostatic and H-bonding interactions, with residues R11, F15 and S19 oriented towards membrane and hydrophobic residues L12, A13, L16 and V17 exposed to solvent. Implications for membrane-mediated hIAPP aggregation are discussed.
蛋白质错误折叠和聚集会导致严重的退行性疾病,如阿尔茨海默病和 2 型糖尿病。人胰岛淀粉样多肽(hIAPP)是 2 型糖尿病患者胰腺中发现的淀粉样沉积物的主要成分。越来越多的证据表明,β细胞的死亡与 hIAPP 与细胞膜的相互作用有关,这加速了肽的聚集。在这项研究中,作为理解膜介导的 hIAPP 聚集的第一步,我们通过进行全原子分子动力学模拟,研究了 hIAPP 与阴离子 POPG 脂质双层相互作用的初始步骤中的原子细节,包括 hIAPP 单体在脂质双层表面的吸附取向和构象。我们发现 hIAPP 单体很快被吸附到双层表面,并且吸附是由带正电荷的残基 K1 和 R11 与带负电荷的脂质头部基团的强静电相互作用驱动的,从 N 端残基开始。hIAPP 通过残基 7-22 平行于脂质双层表面结合形成稳定的螺旋,与之前的实验研究一致。值得注意的是,不同的模拟导致相同的结合取向,由静电和氢键相互作用稳定,残基 R11、F15 和 S19 朝向膜,疏水性残基 L12、A13、L16 和 V17 暴露在溶剂中。讨论了膜介导的 hIAPP 聚集的影响。