Suppr超能文献

鉴定潜在的 HIV-1 整合酶链转移抑制剂:计算化学虚拟筛选和 QM/MM 对接研究。

Identification of potential HIV-1 integrase strand transfer inhibitors: in silico virtual screening and QM/MM docking studies.

机构信息

Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.

出版信息

SAR QSAR Environ Res. 2013;24(7):581-95. doi: 10.1080/1062936X.2013.772919. Epub 2013 Mar 25.

Abstract

HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski's rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.

摘要

HIV-1 整合酶(IN)是一种逆转录病毒酶,能够催化逆转录病毒 DNA 整合到宿主基因组中,这对于病毒的有效复制是必要的。在这项研究中,我们进行了计算机虚拟筛选,以鉴定潜在的 HIV-1 IN 链转移(ST)抑制剂。我们对属于 3-羟基嘧啶-2,4-二酮类的一系列化合物进行了基于药效团的虚拟筛选和基于原子的 3D-QSAR 研究。基于配体的药效团模型,我们得到了一个具有两个氢键受体(A)、一个氢键供体(D)、一个疏水基团(H)和一个芳环(R)的五点药效团作为药效团特征。药效团假设 AADHR 被用作顺序虚拟筛选研究中的 3D 查询,以筛选小分子数据库 Maybridge、ChemBridge 和 Asinex。与药效团假设 AADHR 匹配的命中物被检索出来,并通过 Lipinski 的五规则过滤、分子对接和层次聚类逐步筛选。具有新型和多样化化学型的五个最佳命中物进行了 QM/MM 对接,对接精度得到了提高。我们进一步进行了分子动力学模拟,发现了三个与关键残基形成稳定相互作用的化合物。这些化合物可以作为进一步药物开发和 HIV-1 IN 抑制剂合理设计的先导化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验