Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616, USA.
Langmuir. 2013 Apr 9;29(14):4421-5. doi: 10.1021/la305064j. Epub 2013 Mar 25.
We report the formation of POPC lipid bilayers that span 130 nm pores in a freestanding silicon nitride film supported on a silicon substrate. These solvent-free lipid membranes self-assemble on organosilane-treated Si3N4 via the fusion of 200 nm unilamellar vesicles. Membrane fluidity is verified by fluorescence recovery after photobleaching (FRAP), and membrane resistance in excess of 1 GΩ is demonstrated using electrical impedance spectroscopy (EIS). An array of 40,000 membranes maintained high impedance over 72 h, followed by rupture of most of the membranes by 82 h. Membrane incorporation of gramicidin, a model ion channel, resulted in increased membrane conductance. This membrane conductance was diminished when the gramicidin channels were blocked with CaCl2, indicating that the change in membrane conductance results from gramicidin-mediated ion transport. These very stable, biologically functional pore-spanning membranes open many possibilities for silicon-based ion-channel devices for applications such as biosensors and high-throughput drug screening.
我们报告了在硅基底上的自由支撑氮化硅薄膜中形成跨距为 130nm 孔的 POPC 脂质双层的过程。这些无溶剂脂质膜通过 200nm 单层囊泡的融合在有机硅烷处理的 Si3N4 上自组装。荧光漂白后荧光恢复(FRAP)验证了膜的流动性,而超过 1GΩ 的膜电阻则使用交流阻抗谱(EIS)来证明。40000 个膜的阵列在 72 小时内保持高阻抗,随后在 82 小时时大多数膜破裂。两性霉素 B,一种模型离子通道,的膜掺入导致膜电导增加。当用氯化钙阻断两性霉素 B 通道时,这种膜电导降低,表明膜电导的变化是由两性霉素 B 介导的离子转运引起的。这些非常稳定、具有生物功能的跨膜孔膜为基于硅的离子通道器件在生物传感器和高通量药物筛选等应用中开辟了许多可能性。