Texas A&M AgriLife Research (Texas A&M University System), Vernon, TX 76385, United States.
Sci Total Environ. 2013 May 1;452-453:333-48. doi: 10.1016/j.scitotenv.2013.02.081. Epub 2013 Mar 25.
A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies.
美国德克萨斯州中北部的一个广阔地区,以达拉斯-沃思堡都会区为中心,正遭受着地下水严重枯竭和水质恶化的困扰,这导致该地区的 18 个县被纳入优先地下水管理区。我们结合基于含水层和基于县的水文分析,(1)评估了研究区域下的 Trinity 和 Woodbine 含水层中 1960 年至 2010 年间地下水水位和水质的时空变化,(2)深入研究了主要的水化学相,并参考了含水层水文地层,(3)确定了基于县的空间区,以帮助未来的地下水管理计划。水位和水质数据来自德克萨斯州水资源开发委员会(TWDB),并按十年进行了分析。自 20 世纪 80 年代以来,Trinity 含水层的主要问题是水位持续下降,超过 50%的观测结果出现在深度超过 100 米的地方,而在 Woodbine 含水层中,这一现象直到 21 世纪才变得明显。Woodbine 含水层的主要问题是水质恶化,硫酸盐(SO4(2-))、氯化物(Cl(-))和氟化物(F(-))的二次最大污染物水平(SMCL;美国环境保护署(USEPA)设定的非强制执行阈值)和/或最大污染物水平(MCL,USEPA 设定的具有法律约束力的饮用水标准)的观测值比例大大高于 Woodbine 含水层的观测值,每个十年都超过 70%。然而,在这两个含水层中,超过 70%的观测值超过了总溶解固体的 SMCL,表明地下水高度盐化。Trinity 含水层的水位变化也对水质产生了重大负面影响。该地区的水化学相从西部河流沉积物中的 Ca-Mg-HCO3 和 Ca-HCO3 依次演变为东部三角洲沉积物中的 Na-SO4-Cl。依次演化的水文地球化学相和不断增加的盐化与区域地下水流动模式密切相关。基于同质水文特征的不同空间区随着时间的推移变得越来越明显,这表明需要制定特定区域的地下水管理策略。