Suppr超能文献

鞭毛旋转蛋白 FliY 的结构与活性:CheC 磷酸酶家族的一员。

Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA.

出版信息

J Biol Chem. 2013 May 10;288(19):13493-502. doi: 10.1074/jbc.M112.445171. Epub 2013 Mar 26.

Abstract

BACKGROUND

FliY is a flagellar rotor protein of the CheC phosphatase family.

RESULTS

The FliY structure resembles that of the rotor protein FliM but contains two active centers for CheY dephosphorylation.

CONCLUSION

FliY incorporates properties of the FliM/FliN rotor proteins and the CheC/CheX phosphatases to serve multiple functions in the flagellar switch.

SIGNIFICANCE

FliY distinguishes flagellar architecture and function in different types of bacteria. Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu(35)/Asn(38) and Glu(132)/Asn(135)), with the second site (Glu(132)/Asn(135)) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity.

摘要

背景

FliY 是 CheC 磷酸酶家族的一种鞭毛转子蛋白。

结果

FliY 的结构类似于转子蛋白 FliM,但含有两个用于 CheY 去磷酸化的活性中心。

结论

FliY 结合了 FliM/FliN 转子蛋白和 CheC/CheX 磷酸酶的特性,在鞭毛开关中发挥多种功能。

意义

FliY 区分了不同类型细菌的鞭毛结构和功能。旋转的鞭毛将细菌推向有利的环境。旋转的感觉取决于细胞内的响应调节剂 CheY,当磷酸化(CheY-P)时,它直接与鞭毛马达相互作用。在许多不同类型的细菌中,CheC/CheX/FliY(CXY)家族的磷酸酶终止 CheY-P 信号。与 CheC 和 CheX 不同,FliY 位于鞭毛开关复合物中,该复合物还包含定子偶联蛋白 FliG 和 CheY-P 的靶标 FliM。来自 Thermotoga maritima 的 FliY 催化结构域的 2.5 Å 分辨率晶体结构与 FliM 的中间结构域具有很强的相似性。FliM 中介导转子内接触的区域构成了 FliY 的磷酸酶活性位点。尽管 FliY 与 FliM 相似,但 FliY 不结合 FliG,因此不太可能成为开关复合物中心的 FliM 的替代品。溶液研究表明,FliY 通过其 C 末端结构域二聚化,这些结构域类似于大肠杆菌开关复合物成分 FliN。FliY 在拓扑结构上与大肠杆菌趋化磷酸酶 CheZ 不同,但似乎利用了相似的结构基序来进行 CheY 的去磷酸化,与 CheX 非常相似。定点突变体的识别特性和磷酸酶活性鉴定了 FliY 中的两个拟对称活性位点(Glu(35)/Asn(38)和 Glu(132)/Asn(135)),第二个位点(Glu(132)/Asn(135))更活跃。与 FliM 保守的假定 N 端 CheY 结合结构域对于结合 CheY-P 或磷酸酶活性不是必需的。

相似文献

1
Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family.
J Biol Chem. 2013 May 10;288(19):13493-502. doi: 10.1074/jbc.M112.445171. Epub 2013 Mar 26.
3
Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11886-91. doi: 10.1073/pnas.0602811103. Epub 2006 Aug 1.
4
Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch.
J Biol Chem. 2003 Dec 5;278(49):48611-6. doi: 10.1074/jbc.M306180200. Epub 2003 Aug 14.
5
Organization of the Flagellar Switch Complex of Bacillus subtilis.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00626-18. Print 2019 Apr 15.
6
CheX in the three-phosphatase system of bacterial chemotaxis.
J Bacteriol. 2007 Oct;189(19):7007-13. doi: 10.1128/JB.00896-07. Epub 2007 Aug 3.
7
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9370-5. doi: 10.1073/pnas.1000935107. Epub 2010 May 3.
8
Assembly states of FliM and FliG within the flagellar switch complex.
J Mol Biol. 2015 Feb 27;427(4):867-886. doi: 10.1016/j.jmb.2014.12.009. Epub 2014 Dec 20.
9
The crystal structure of an activated Thermotoga maritima CheY with N-terminal region of FliM.
Int J Biol Macromol. 2013 Mar;54:76-83. doi: 10.1016/j.ijbiomac.2012.12.003. Epub 2012 Dec 10.

引用本文的文献

1
First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium S-30, isolated from environmental sample.
Front Microbiol. 2024 Apr 29;15:1351161. doi: 10.3389/fmicb.2024.1351161. eCollection 2024.
2
Parallel genetic adaptation of to different plant species.
Microb Genom. 2023 Jul;9(7). doi: 10.1099/mgen.0.001064.
4
Precise Measurement of the Stoichiometry of the Adaptive Bacterial Flagellar Switch.
mBio. 2023 Apr 25;14(2):e0018923. doi: 10.1128/mbio.00189-23. Epub 2023 Mar 22.
5
The Missing Pieces: The Role of Secretion Systems in Virulence.
Biomolecules. 2023 Jan 9;13(1):135. doi: 10.3390/biom13010135.
6
Specific Features of the Proteomic Response of Thermophilic Bacterium to Terahertz Irradiation.
Int J Mol Sci. 2022 Dec 2;23(23):15216. doi: 10.3390/ijms232315216.
7
Structural insights into the mechanism of archaellar rotational switching.
Nat Commun. 2022 May 23;13(1):2857. doi: 10.1038/s41467-022-30358-9.
8
9
Structural Conservation and Adaptation of the Bacterial Flagella Motor.
Biomolecules. 2020 Oct 29;10(11):1492. doi: 10.3390/biom10111492.
10
The Architectural Dynamics of the Bacterial Flagellar Motor Switch.
Biomolecules. 2020 May 29;10(6):833. doi: 10.3390/biom10060833.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis.
Mol Microbiol. 2012 Nov;86(3):743-56. doi: 10.1111/mmi.12015. Epub 2012 Sep 20.
3
Structure of flagellar motor proteins in complex allows for insights into motor structure and switching.
J Biol Chem. 2012 Oct 19;287(43):35779-83. doi: 10.1074/jbc.C112.378380. Epub 2012 Aug 15.
4
Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography.
J Bacteriol. 2012 Mar;194(6):1299-306. doi: 10.1128/JB.06474-11. Epub 2012 Jan 6.
5
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
6
Structural insight into the rotational switching mechanism of the bacterial flagellar motor.
PLoS Biol. 2011 May;9(5):e1000616. doi: 10.1371/journal.pbio.1000616. Epub 2011 May 10.
7
Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.
Nature. 2010 Aug 19;466(7309):996-1000. doi: 10.1038/nature09300. Epub 2010 Aug 1.
8
Origins and diversification of a complex signal transduction system in prokaryotes.
Sci Signal. 2010 Jun 29;3(128):ra50. doi: 10.1126/scisignal.2000724.
9
Protein annotation and modelling servers at University College London.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W563-8. doi: 10.1093/nar/gkq427. Epub 2010 May 27.
10
Chemotactic response and adaptation dynamics in Escherichia coli.
PLoS Comput Biol. 2010 May 20;6(5):e1000784. doi: 10.1371/journal.pcbi.1000784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验