Suppr超能文献

酿酒酵母对柠檬烯的生理和转录反应显示细胞壁发生变化,但质膜没有变化。

Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane.

机构信息

Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.

出版信息

Appl Environ Microbiol. 2013 Jun;79(12):3590-600. doi: 10.1128/AEM.00463-13. Epub 2013 Mar 29.

Abstract

Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis.

摘要

单萜类化合物在加氢后可用作可持续航空燃料的轻馏分成分。在工程微生物(如酿酒酵母)中发酵生产单萜类化合物,作为从可再生生物质中提供这些下一代燃料的潜在途径引起了关注。然而,终产物毒性对微生物合成构成了巨大的挑战。由于其疏水性,单萜类化合物的抑制作用长期以来归因于膜干扰,但分子机制在很大程度上仍未得到解决。为了更好地了解作用模式,我们分析了细胞包膜的组成和结构完整性以及用抑制量的 d-柠檬烯(107mg/L)处理的酵母细胞的转录反应。我们发现溶剂挑战后膜流动性、结构膜完整性或脂肪酸组成没有改变。用 Calcofluor White 染色剂染色后,每个细胞的平均荧光强度增加了 4 倍,并且对细胞壁降解酶的敏感性增加,表明柠檬烯破坏了细胞壁特性。全局转录测量结果通过显示没有上调麦角固醇或脂肪酸生物合成途径证实了膜完整性观察结果,在乙醇暴露期间,这些途径通常在酵母中过度表达以增强膜刚性。柠檬烯冲击确实通过过表达参与细胞壁完整性信号通路的几个基因(ROM1、RLM1、PIR3、CTT1、YGP1、MLP1、PST1 和 CWP1)对细胞壁损伤产生了补偿反应。这是第一个证明细胞壁而不是质膜恶化是单萜类化合物抑制的主要原因的报告。我们表明,柠檬烯可以改变细胞壁的结构和功能,这对细胞分裂有明显影响。

相似文献

2
Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
J Appl Microbiol. 2013 Feb;114(2):482-91. doi: 10.1111/jam.12046. Epub 2012 Nov 19.
3
Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene.
Biotechnol Lett. 2012 Aug;34(8):1505-9. doi: 10.1007/s10529-012-0931-6. Epub 2012 Apr 24.
4
Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.
Appl Microbiol Biotechnol. 2013 Jul;97(14):6467-75. doi: 10.1007/s00253-013-4931-9. Epub 2013 May 5.
6
Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis.
J Antimicrob Chemother. 2004 Jul;54(1):46-55. doi: 10.1093/jac/dkh245. Epub 2004 Jun 16.
7
Limonene inhibits Candida albicans growth by inducing apoptosis.
Med Mycol. 2018 Jul 1;56(5):565-578. doi: 10.1093/mmy/myx074.
10
Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
Yeast. 2015 Jan;32(1):159-71. doi: 10.1002/yea.3038. Epub 2014 Sep 17.

引用本文的文献

1
PYR1 Biosensor-Driven Genome-Wide CRISPR Screens for Improved Monoterpene Production in .
ACS Synth Biol. 2025 Jul 10. doi: 10.1021/acssynbio.4c00797.
2
Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels.
Eng Microbiol. 2022 Mar 17;2(2):100013. doi: 10.1016/j.engmic.2022.100013. eCollection 2022 Jun.
4
Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against pv. .
J Microbiol Biotechnol. 2024 Mar 28;34(3):562-569. doi: 10.4014/jmb.2311.11016. Epub 2024 Jan 17.
6
Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production.
Front Bioeng Biotechnol. 2023 Feb 23;11:1132244. doi: 10.3389/fbioe.2023.1132244. eCollection 2023.
7
Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against .
Molecules. 2022 Dec 14;27(24):8884. doi: 10.3390/molecules27248884.

本文引用的文献

1
Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size.
J Chem Ecol. 1990 Apr;16(4):1399-408. doi: 10.1007/BF01021035.
2
Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
J Appl Microbiol. 2013 Feb;114(2):482-91. doi: 10.1111/jam.12046. Epub 2012 Nov 19.
4
Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene.
Biotechnol Lett. 2012 Aug;34(8):1505-9. doi: 10.1007/s10529-012-0931-6. Epub 2012 Apr 24.
7
Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea.
Appl Environ Microbiol. 2011 Sep;77(18):6400-8. doi: 10.1128/AEM.00694-11. Epub 2011 Jul 22.
8
Engineering microbial biofuel tolerance and export using efflux pumps.
Mol Syst Biol. 2011 May 10;7:487. doi: 10.1038/msb.2011.21.
9
Metabolic engineering of monoterpene synthesis in yeast.
Biotechnol Bioeng. 2011 Aug;108(8):1883-92. doi: 10.1002/bit.23129. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验