The Neuropsychological Laboratory, CNS-Fed, 39 rue Meaux, 75019 Paris, France.
Stat Med. 2013 Sep 10;32(20):3436-48. doi: 10.1002/sim.5788. Epub 2013 Mar 31.
Traditional displays of principal component analyses lack readability to discriminate between putative clusters of variables or cases. Here, the author proposes a method that clusterizes and visualizes variables or cases through principal component analyses thus facilitating their analysis. The method displays pre-determined clusters of variables or cases as urchins that each has a soma (the average point) and spines (the individual variables or cases). Through three examples in the field of neuropsychology, the author illustrates how urchins help examine the modularity of cognitive tasks on the one hand and identify groups of healthy versus brain-damaged participants on the other hand. Some of the data used in this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database. The urchin method was implemented in MATLAB, and the source code is available in the Supporting information. Urchins can be useful in biomedical studies to identify distinct phenomena at first glance, each having several measures (clusters of variables) or distinct groups of participants (clusters of cases).
传统的主成分分析显示缺乏可读性,难以区分假设的变量或案例聚类。在这里,作者提出了一种通过主成分分析对变量或案例进行聚类和可视化的方法,从而便于对其进行分析。该方法将预先确定的变量或案例聚类显示为海胆,每个海胆都有一个体腔(平均值)和刺(单个变量或案例)。通过神经心理学领域的三个示例,作者说明了海胆如何有助于一方面检查认知任务的模块性,另一方面识别健康参与者和脑损伤参与者的组。本文使用的一些数据来自阿尔茨海默病神经影像学倡议数据库。海胆方法是在 MATLAB 中实现的,源代码可在支持信息中找到。海胆在生物医学研究中很有用,可以一目了然地识别出不同的现象,每个现象都有几个度量(变量聚类)或不同的参与者组(案例聚类)。