Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
J Chem Phys. 2013 Mar 28;138(12):124109. doi: 10.1063/1.4796387.
In this work, we combine our earlier proposed empirical potential based quasi-continuum theory, (EQT) [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)], which is a coarse-grained multiscale framework to predict the static structure of confined fluids, with a phenomenological Langevin equation to simulate the dynamics of confined fluids in thermal equilibrium. An attractive feature of this approach is that all the input parameters to the Langevin equation (mean force profile of the confined fluid and the static friction coefficient) can be determined using the outputs of the EQT and the self-diffusivity data of the corresponding bulk fluid. The potential of mean force profile, which is a direct output from EQT is used to compute the mean force profile of the confined fluid. The density profile, which is also a direct output from EQT, along with the self-diffusivity data of the bulk fluid is used to determine the static friction coefficient of the confined fluid. We use this approach to compute the mean square displacement and survival probabilities of some important fluids such as carbon-dioxide, water, and Lennard-Jones argon confined inside slit pores. The predictions from the model are compared with those obtained using molecular dynamics simulations. This approach of combining EQT with a phenomenological Langevin equation provides a mathematically simple and computationally efficient means to study the impact of structural inhomogeneity on the self-diffusion dynamics of confined fluids.
在这项工作中,我们结合了之前提出的基于经验势的准连续体理论(EQT)[A. V. Raghunathan、J. H. Park 和 N. R. Aluru,J. Chem. Phys. 127, 174701(2007)],这是一种粗粒化多尺度框架,用于预测受限流体的静态结构,并采用唯象的朗之万方程来模拟处于热平衡状态的受限流体的动力学。这种方法的一个吸引人的特点是,朗之万方程的所有输入参数(受限流体的平均力轮廓和静态摩擦系数)都可以使用 EQT 的输出和相应的体相流体的自扩散率数据来确定。平均力轮廓的势能,这是 EQT 的直接输出,用于计算受限流体的平均力轮廓。密度轮廓也是 EQT 的直接输出,结合体相流体的自扩散率数据,用于确定受限流体的静态摩擦系数。我们使用这种方法来计算一些重要流体(如二氧化碳、水和受限在狭缝孔内的 Lennard-Jones 氩)的均方位移和生存概率。模型的预测与使用分子动力学模拟获得的结果进行了比较。这种将 EQT 与唯象朗之万方程相结合的方法为研究结构不均匀性对受限流体自扩散动力学的影响提供了一种数学上简单且计算效率高的方法。