Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
J Chem Phys. 2013 Mar 28;138(12):12A533. doi: 10.1063/1.4790137.
The shear modulus G of two glass-forming colloidal model systems in d = 3 and d = 2 dimensions is investigated by means of, respectively, molecular dynamics and Monte Carlo simulations. Comparing ensembles where either the shear strain γ or the conjugated (mean) shear stress τ are imposed, we compute G from the respective stress and strain fluctuations as a function of temperature T while keeping a constant normal pressure P. The choice of the ensemble is seen to be highly relevant for the shear stress fluctuations μ(F)(T) which at constant τ decay monotonously with T following the affine shear elasticity μ(A)(T), i.e., a simple two-point correlation function. At variance, non-monotonous behavior with a maximum at the glass transition temperature T(g) is demonstrated for μF(T) at constant γ. The increase of G below T(g) is reasonably fitted for both models by a continuous cusp singularity, G(T) ∝ (1 - T∕T(g))(1∕2), in qualitative agreement with recent theoretical predictions. It is argued, however, that longer sampling times may lead to a sharper transition.
通过分子动力学和蒙特卡罗模拟,分别研究了 d = 3 和 d = 2 维的两种玻璃形成胶体模型系统的剪切模量 G。通过分别施加剪切应变 γ 或共轭(平均)剪切应力 τ 的系综,我们在保持恒定正压 P 的情况下,将相应的应力和应变波动作为温度 T 的函数来计算 G。系综的选择对于剪切应力波动 μ(F)(T) 非常重要,在恒定 τ 的情况下,μ(F)(T) 单调地随 T 衰减,遵循仿射剪切弹性 μ(A)(T),即简单的两点相关函数。相反,对于恒定 γ 的 μF(T),表现出非单调行为,在玻璃化转变温度 T(g)处出现最大值。对于这两种模型,G(T)∝(1 - T∕T(g))(1∕2),低于 T(g)的 G 增加都可以通过连续的尖点奇点合理拟合,与最近的理论预测定性一致。然而,有人认为,更长的采样时间可能导致更陡峭的转变。