DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
Appl Environ Microbiol. 2013 Jun;79(12):3724-33. doi: 10.1128/AEM.00518-13. Epub 2013 Apr 5.
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
鞘氨醇单胞菌是α变形菌中的一个生理功能多样的群体,其中包括对生物技术、人类健康和环境养分循环有兴趣的菌株。在这项研究中,我们比较了 26 株鞘氨醇单胞菌的基因组序列,以深入了解它们的生态学、代谢多样性和环境适应能力。我们的多基因系统发育和平均氨基酸同一性(AAI)分析证实,除了 Sphingomonas sp. strain SKA58 外,Sphingomonas、Sphingobium、Sphingopyxis 和 Novosphingobium 都是很好地解决的单系群,我们建议将 Sphingomonas sp. strain SKA58 归入 Sphingobium 属。我们对鞘氨醇单胞菌的泛基因组分析揭示了许多种特异性的开放阅读框(ORF),但很少有属特异性核心的特征。鞘氨醇单胞菌基因组的组织和编码潜力似乎高度可变,质粒介导的基因转移和染色体-质粒重组,以及噬菌体和转座子介导的重排,似乎在该群体的基因组进化中起着重要作用。我们发现,许多鞘氨醇单胞菌基因组编码了许多加氧酶和糖苷水解酶,它们分别负责降解各种难降解的芳香化合物和多糖的能力。许多这些酶都编码在大型质粒上,这表明它们可能很容易在物种之间转移。我们还鉴定了许多基因组中推测用于硫酸盐和硝基芳香化合物代谢的酶,这表明植物化合物或化学污染物可能是氮和硫的来源。许多这些鞘氨醇单胞菌似乎适应于贫营养环境,但其中一些含有与宿主相关的基因组特征。我们的工作为理解鞘氨醇单胞菌所采用的生态策略及其在环境养分循环中的作用提供了基础。