Departments of Design and Environmental Analysis and of Human Development, Bronfenbrenner Center for Translational Research, Cornell University.
Psychol Bull. 2013 Nov;139(6):1342-96. doi: 10.1037/a0031808. Epub 2013 Apr 8.
Childhood multiple risk factor exposure exceeds the adverse developmental impacts of singular exposures. Multiple risk factor exposure may also explain why sociodemographic variables (e.g., poverty) can have adverse consequences. Most research on multiple risk factor exposure has relied upon cumulative risk (CR) as the measure of multiple risk. CR is constructed by dichotomizing each risk factor exposure (0 = no risk; 1 = risk) and then summing the dichotomous scores. Despite its widespread use in developmental psychology and elsewhere, CR has several shortcomings: Risk is designated arbitrarily; data on risk intensity are lost; and the index is additive, precluding the possibility of statistical interactions between risk factors. On the other hand, theoretically more compelling multiple risk metrics prove untenable because of low statistical power, extreme higher order interaction terms, low robustness, and collinearity among risk factors. CR multiple risk metrics are parsimonious, are statistically sensitive even with small samples, and make no assumptions about the relative strengths of multiple risk factors or their collinearity. CR also fits well with underlying theoretical models (e.g., Bronfenbrenner's, 1979, bioecological model; McEwen's, 1998, allostasis model of chronic stress; and Ellis, Figueredo, Brumbach, & Schlomer's, 2009, developmental evolutionary theory) concerning why multiple risk factor exposure is more harmful than singular risk exposure. We review the child CR literature, comparing CR to alternative multiple risk measurement models. We also discuss strengths and weaknesses of developmental CR research, offering analytic and theoretical suggestions to strengthen this growing area of scholarship. Finally, we highlight intervention and policy implications of CR and child development research and theory.
儿童期多种风险因素暴露超过单一因素暴露的不良发育影响。多种风险因素暴露也可能解释为什么社会人口统计学变量(如贫困)会产生不良后果。大多数关于多种风险因素暴露的研究都依赖于累积风险(CR)作为衡量多种风险的指标。CR 通过将每个风险因素暴露(0=无风险;1=风险)二值化,然后将二值化得分相加来构建。尽管它在发展心理学和其他领域得到了广泛应用,但 CR 存在几个缺点:风险是任意指定的;风险强度的数据丢失;并且该指数是可加的,排除了风险因素之间统计相互作用的可能性。另一方面,理论上更有说服力的多种风险指标由于统计能力低、高阶交互项极端、稳健性低以及风险因素之间的共线性而无法实施。CR 多风险指标简洁,即使样本量小,也具有统计敏感性,并且不假设多个风险因素的相对强度或它们的共线性。CR 还与潜在的理论模型(例如,Bronfenbrenner 的 1979 年生物生态模型;McEwen 的 1998 年慢性应激的适应模型;以及 Ellis、Figueredo、Brumbach 和 Schlomer 的 2009 年发展进化理论)相吻合,这些模型涉及为什么多种风险因素暴露比单一风险暴露更有害。我们回顾了儿童 CR 文献,将 CR 与替代的多种风险测量模型进行了比较。我们还讨论了发展 CR 研究的优势和劣势,为加强这一不断发展的学术领域提供了分析和理论建议。最后,我们强调了 CR 和儿童发展研究和理论的干预和政策意义。