Suppr超能文献

叶酸修饰的壳聚糖纳米颗粒的生物相容性

Biocompatibility of folate-modified chitosan nanoparticles.

作者信息

Chakraborty Subhankari Prasad, Sahu Sumanta Kumar, Pramanik Panchanan, Roy Somenath

机构信息

Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India.

出版信息

Asian Pac J Trop Biomed. 2012 Mar;2(3):215-9. doi: 10.1016/S2221-1691(12)60044-6.

Abstract

OBJECTIVE

To evaluate the acute toxicity of carboxymethyl chitosan-2, 2' ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity.

METHODS

CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2' ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined.

RESULTS

Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL.

CONCLUSIONS

These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications.

摘要

目的

评估羧甲基壳聚糖-2,2'-乙二氧基双乙胺-叶酸(CMC-EDBE-FA)的急性毒性以及对微生物生长和体外细胞毒性的可能影响。

方法

通过2,2'-乙二氧基双乙胺将叶酸共价连接到羧甲基壳聚糖上制备CMC-EDBE-FA。测定了CMC-EDBE-FA纳米颗粒的体内急性毒性、体外细胞毒性和抗菌活性。

结果

万古霉素对万古霉素敏感的金黄色葡萄球菌具有抗菌活性,但CMC-EDBE-FA纳米颗粒未表现出任何抗菌活性,这通过最低抑菌浓度(MIC)、最低杀菌浓度(MBC)、纸片琼脂扩散法(DAD)和杀菌动力学试验得以证明。此外,在口服剂量高达1000 mg/kg时,CMC-EDBE-FA纳米颗粒未显示出体内急性毒性迹象,在浓度高达250μg/mL时也未表现出体外细胞毒性。

结论

这些发现表明CMC-EDBE-FA纳米颗粒有望在生物医学应用中是安全的。

相似文献

1
Biocompatibility of folate-modified chitosan nanoparticles.
Asian Pac J Trop Biomed. 2012 Mar;2(3):215-9. doi: 10.1016/S2221-1691(12)60044-6.
2
Antioxidative effect of folate-modified chitosan nanoparticles.
Asian Pac J Trop Biomed. 2011 Jan;1(1):29-38. doi: 10.1016/S2221-1691(11)60064-6.
3
In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus.
Int J Pharm. 2012 Oct 15;436(1-2):659-76. doi: 10.1016/j.ijpharm.2012.07.033. Epub 2012 Jul 25.
4
In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery.
J Mater Sci Mater Med. 2010 May;21(5):1587-97. doi: 10.1007/s10856-010-3998-4. Epub 2010 Jan 29.
5
pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin.
Colloids Surf B Biointerfaces. 2017 Oct 1;158:650-657. doi: 10.1016/j.colsurfb.2017.07.049. Epub 2017 Jul 24.
7
Curcumin-loaded N,O-carboxymethyl chitosan nanoparticles for cancer drug delivery.
J Biomater Sci Polym Ed. 2012;23(11):1381-400. doi: 10.1163/092050611X581534. Epub 2012 May 8.
8
Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Sapogenin Derivative Cationic Liposomes.
Int J Nanomedicine. 2019 Nov 1;14:8611-8626. doi: 10.2147/IJN.S218101. eCollection 2019.
9
Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus.
Int J Biol Macromol. 2012 Nov;51(4):392-9. doi: 10.1016/j.ijbiomac.2012.06.009. Epub 2012 Jun 15.
10
Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.
Drug Dev Ind Pharm. 2018 Mar;44(3):365-376. doi: 10.1080/03639045.2017.1371741. Epub 2017 Dec 5.

引用本文的文献

1
Chitosan nanoparticle toxicity: A comprehensive literature review of and assessments for medical applications.
Toxicol Rep. 2023 Jun 29;11:83-106. doi: 10.1016/j.toxrep.2023.06.012. eCollection 2023 Dec.
2
The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles.
Front Pharmacol. 2022 May 4;13:880377. doi: 10.3389/fphar.2022.880377. eCollection 2022.
3
Chitosan as possible inhibitory agents and delivery systems in leukemia.
Cancer Cell Int. 2021 Oct 18;21(1):544. doi: 10.1186/s12935-021-02243-w.
5
6
Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development.
Cancer Nanotechnol. 2012;3(1-6):13-23. doi: 10.1007/s12645-012-0026-z. Epub 2012 May 27.

本文引用的文献

1
Biochemical characters and antibiotic susceptibility of Staphylococcus aureus isolates.
Asian Pac J Trop Biomed. 2011 Jun;1(3):212-6. doi: 10.1016/S2221-1691(11)60029-4.
2
Nitric oxide mediated Staphylococcus aureus pathogenesis and protective role of nanoconjugated vancomycin.
Asian Pac J Trop Biomed. 2011 Apr;1(2):102-9. doi: 10.1016/S2221-1691(11)60005-1.
3
Antioxidative effect of folate-modified chitosan nanoparticles.
Asian Pac J Trop Biomed. 2011 Jan;1(1):29-38. doi: 10.1016/S2221-1691(11)60064-6.
4
Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents.
Nanotechnology. 2010 Mar 12;21(10):105103. doi: 10.1088/0957-4484/21/10/105103. Epub 2010 Feb 15.
5
Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene.
Biomacromolecules. 2007 Nov;8(11):3355-64. doi: 10.1021/bm700458a. Epub 2007 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验