Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
Invest Radiol. 2013 Sep;48(9):671-7. doi: 10.1097/RLI.0b013e31828b9830.
The aim of this study was to quantify the influence of image resolution on the apparent transverse relaxivity (R2*) of the magnetic resonance (MR) signal in human renal tissue in vivo and in phantom measurements.
This prospective study included 17 healthy volunteers (age, 32 ± 8 years, 6 women). Parametrical R2* maps were computed via monoexponential fitting of multiecho 2-dimensional fast-field echo data measured at 1.5 T (repetition time [TR], 150 milliseconds; flip angle [FA], 40°; minimum echo time [TE], 4.6 milliseconds; ΔTE, 5 milliseconds; 16 echoes) and at 3 T (TR, 140 milliseconds; FA, 70°; minimum TE, 2 milliseconds; ΔTE, 5 milliseconds; 16 echoes) with varying nominal volumes of the encoded voxels (from 5.76 to 36.0 mm). For each voxel size, mean R2* values were computed in regions of interest drawn in the left and right renal parenchyma. For data acquired using minimum voxel size, the mean R2* values were computed over the cortex and medulla separately. The squared 2-norm of the residuals was computed to evaluate the goodness of the pixel-wise exponential fits. Six multiecho MR images of a water phantom were acquired using a 2-dimensional fast-field echo sequence (FA, 50°; TR, 108 milliseconds; TE, 4 milliseconds; ΔTE, 20 milliseconds) at 3 T after shim adjustment and in the presence of a uniform background gradient of 40 μT/m. The nominal voxel size was varied in a range between 2 and 12.5 mm.
Mean R2* values of 13.04 ± 0.71 s (right renal cortex) and 16.47 ± 1.92 s (right renal medulla) were computed at 1.5 T. At 3 T, the R2* of the right medulla was 28.27 ± 1.52 s and the cortical R2* was 19.22 ± 2.32 s. Comparable relaxivity values were found over the left kidney at both field strengths. Increasing R2* values were observed for increasing voxel volume in both the water phantom and renal tissue data. At a constant slice thickness of 4 mm, the decrease in the in-plane resolution from 1.2 × 1.2 mm to 3.0 × 3.0 mm led to a maximum increase of the renal R2* of 15% at 1.5 T and of 12% at 3 T. Increasing the slice thickness from 3 to 8 mm at a constant in-plane resolution of 1.5 × 1.5 mm resulted in a maximum increase of the renal R2* of 30% at 1.5 T and of 26% at 3 T. On the other hand, increasing the voxel size improved the goodness of the fit implied by the smaller residuals.
The phantom experiments and in vivo acquisitions of healthy renal tissue documented a significant dependence of the apparent R2* relaxation rate on the spatial resolution of the MR imaging data. In clinical practice, the voxel volume for the quantification of renal R2* should be optimized in a compromise between minimizing the effects of macroscopic field inhomogeneity and maintaining a sufficiently high signal-to-noise ratio and goodness of fit. When comparing quantitative R2* among different publications, the influence of the spatial resolution should be taken into account.
本研究旨在量化磁共振(MR)信号在人体肾组织中表观横向弛豫率(R2*)的影响,该影响与图像分辨率有关,包括在体内和体模测量中。
这项前瞻性研究纳入了 17 名健康志愿者(年龄,32±8 岁,6 名女性)。通过在 1.5 T(重复时间 [TR],150 毫秒;翻转角 [FA],40°;最小回波时间 [TE],4.6 毫秒;ΔTE,5 毫秒;16 个回波)和 3 T(TR,140 毫秒;FA,70°;最小 TE,2 毫秒;ΔTE,5 毫秒;16 个回波)下对二维快速场回波数据进行单指数拟合,计算出 R2参数图,测量时的体素编码名义体积不同(从 5.76 到 36.0 毫米)。对于每个体素大小,在左、右肾实质绘制的感兴趣区域中计算平均 R2值。对于使用最小体素大小采集的数据,分别在皮质和髓质中计算平均 R2*值。计算残差的平方 2-范数,以评估像素级指数拟合的拟合度。在调整匀场后和存在 40 μT/m 均匀背景梯度的情况下,使用二维快速场回波序列(FA,50°;TR,108 毫秒;TE,4 毫秒;ΔTE,20 毫秒)在 3 T 下采集水模的 6 个多回波 MR 图像。名义体素大小在 2 到 12.5 毫米之间变化。
在 1.5 T 时,计算出右肾皮质的平均 R2值为 13.04±0.71 s,右肾髓质的平均 R2值为 16.47±1.92 s。在 3 T 时,右肾髓质的 R2值为 28.27±1.52 s,皮质的 R2值为 19.22±2.32 s。在两个场强下,在左肾中均发现了相似的弛豫率值。在水模和肾组织数据中,随着体素体积的增加,观察到 R2值增加。在层厚为 4 毫米的情况下,从 1.2×1.2 毫米到 3.0×3.0 毫米的平面内分辨率降低导致 1.5 T 时肾 R2的最大增加 15%,3 T 时肾 R2的最大增加 12%。在平面内分辨率为 1.5×1.5 毫米的情况下,将层厚从 3 毫米增加到 8 毫米,导致 1.5 T 时肾 R2的最大增加 30%,3 T 时肾 R2*的最大增加 26%。另一方面,增加体素大小可以改善较小残差所暗示的拟合度。
体模实验和健康肾组织的体内采集证明,磁共振成像数据的空间分辨率对表观 R2弛豫率有显著影响。在临床实践中,为了在最小化宏观磁场不均匀性的影响和保持足够高的信噪比和拟合度之间取得平衡,应优化用于量化肾 R2的体素体积。当在不同出版物之间比较定量 R2*时,应考虑空间分辨率的影响。