Suppr超能文献

一种用于 EEG 信号的长期、无帽监测的电容式、生物兼容且可粘贴的电极。

A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.

机构信息

Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-100, Korea.

出版信息

J Neural Eng. 2013 Jun;10(3):036006. doi: 10.1088/1741-2560/10/3/036006. Epub 2013 Apr 10.

Abstract

OBJECTIVE

Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring.

APPROACH

We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential.

MAIN RESULTS

We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear.

SIGNIFICANCE

These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

摘要

目的

长期脑电图(EEG)监测将 EEG 应用扩展到各个领域,但需要无帽记录 EEG 信号。我们的目标是开发一种用于无帽和长期 EEG 监测的电容式、小尺寸、粘附性和生物相容性电极。

方法

我们开发了一种由聚二甲基硅氧烷(PDMS)和粘性 PDMS 制成的用于 EEG 监测的电极。该电极可以附着在毛茸茸的头皮上,并完全被头发隐藏。我们通过测量电压增益到频率和使用 30 次重复附着和分离测试的粘附力来测试其电和机械(粘附)性能。通过检测 alpha 节律和测量稳态视觉诱发电位和 N100 听觉诱发电位来评估电极在 EEG 上的性能。

主要结果

我们观察到成功记录了高质量的 alpha 节律和各种刺激的诱发信号。电极的生物相容性得到了验证,一项调查发现,该电极佩戴舒适方便。

意义

这些结果表明,所提出的 EEG 电极适用于长期 EEG 监测,且方便使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验