Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721-0089, USA.
Hippocampus. 2013 Aug;23(8):729-44. doi: 10.1002/hipo.22132. Epub 2013 Jun 4.
The rodent hippocampus and entorhinal cortex contain spatially modulated cells that serve as the basis for spatial coding. Both medial entorhinal grid cells and hippocampal place cells have been shown to encode spatial information across multiple spatial scales that increase along the dorsoventral axis of these structures. Place cells near the dorsal pole possess small, stable, and spatially selective firing fields, while ventral cells have larger, less stable, and less spatially selective firing fields. One possible explanation for these dorsoventral changes in place field properties is that they arise as a result of similar dorsoventral differences in the properties of the grid cell inputs to place cells. Here, we test the alternative hypothesis that dorsoventral place field differences are due to higher amounts of nonspatial inputs to ventral hippocampal cells. We use a computational model of the entorhinal-hippocampal network to assess the relative contributions of grid scale and nonspatial inputs in determining place field size and stability. In addition, we assess the consequences of grid node firing rate heterogeneity on place field stability. Our results suggest that dorsoventral differences in place cell properties can be better explained by changes in the amount of nonspatial inputs, rather than by changes in the scale of grid cell inputs, and that grid node heterogeneity may have important functional consequences. The observed gradient in field size may reflect a shift from processing primarily spatial information in the dorsal hippocampus to processing more nonspatial, contextual, and emotional information near the ventral hippocampus.
啮齿动物的海马体和内嗅皮层包含空间调制细胞,这些细胞是空间编码的基础。内侧内嗅网格细胞和海马位置细胞都被证明可以在多个空间尺度上编码空间信息,这些信息沿着这些结构的背腹轴增加。靠近背极的位置细胞具有小的、稳定的和空间选择性的放电场,而腹侧细胞具有更大的、不太稳定的和空间选择性较小的放电场。这些位置场特性的背腹变化的一个可能解释是,它们是由于网格细胞输入到位置细胞的特性中的类似背腹差异而产生的。在这里,我们检验了替代假设,即背腹位置场差异是由于腹侧海马细胞的非空间输入量增加所致。我们使用内嗅-海马网络的计算模型来评估网格尺度和非空间输入在确定位置场大小和稳定性方面的相对贡献。此外,我们还评估了网格节点放电率异质性对位置场稳定性的影响。我们的结果表明,位置细胞特性的背腹差异可以更好地用非空间输入量的变化来解释,而不是用网格细胞输入的尺度变化来解释,并且网格节点异质性可能具有重要的功能后果。观察到的场大小梯度可能反映了从背侧海马体主要处理空间信息到腹侧海马体处理更多非空间、上下文和情绪信息的转变。