Suppr超能文献

指数精确慢流形上的数据同化。

Data assimilation on the exponentially accurate slow manifold.

机构信息

Department of Aeronautics, Imperial College London, London SW7 2AZ, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 Apr 15;371(1991):20120300. doi: 10.1098/rsta.2012.0300. Print 2013 May 28.

Abstract

I describe an approach to data assimilation making use of an explicit map that defines a coordinate system on the slow manifold in the semi-geostrophic scaling in Lagrangian coordinates, and apply the approach to a simple toy system that has previously been proposed as a low-dimensional model for the semi-geostrophic scaling. The method can be extended to Lagrangian particle methods such as Hamiltonian particle-mesh and smooth-particle hydrodynamics applied to the rotating shallow-water equations, and many of the properties will remain for more general Eulerian methods. Making use of Hamiltonian normal-form theory, it has previously been shown that, if initial conditions for the system are chosen as image points of the map, then the fast components of the system have exponentially small magnitude for exponentially long times as ε→0, and this property is preserved if one uses a symplectic integrator for the numerical time stepping. The map may then be used to parametrize initial conditions near the slow manifold, allowing data assimilation to be performed without introducing any fast degrees of motion (more generally, the precise amount of fast motion can be selected).

摘要

我描述了一种利用显式地图进行数据同化的方法,该地图定义了拉格朗日坐标中慢流形上的坐标系,适用于半地转尺度的简单玩具系统,该系统以前曾被提议作为半地转尺度的低维模型。该方法可以扩展到拉格朗日粒子方法,如哈密顿粒子网格和光滑粒子流体动力学,应用于旋转浅水方程,并且许多性质将保留用于更一般的欧拉方法。利用哈密顿正则形式理论,以前已经表明,如果系统的初始条件选择为映射的像点,那么随着 ε→0,系统的快速分量具有指数小的幅度,并且如果使用辛积分器进行数值时间步长,该性质将得到保留。然后,可以使用该映射来参数化慢流形附近的初始条件,允许在不引入任何快速运动自由度的情况下进行数据同化(更一般地,可以选择精确的快速运动量)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验