Whittemore Alice S, Halpern Jerry
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA.
Stat Methods Med Res. 2016 Aug;25(4):1313-29. doi: 10.1177/0962280213480420. Epub 2013 Apr 16.
We propose a cost-effective sampling design and estimating procedure for validating personal risk models using right-censored cohort data. Validation involves using each subject's covariates, as ascertained at cohort entry, in a risk model (specified independently of the data) to assign him/her a probability of an adverse outcome within a future time period. Subjects are then grouped according to the magnitudes of their assigned risks, and within each group, the mean assigned risk is compared with the probability of outcome occurrence as estimated using the follow-up data. Such validation presents two complications. First, in the presence of right-censoring, estimating the probability of developing the outcomes before death requires competing risk analysis. Second, for rare outcomes, validation using the full cohort requires assembling covariates and assigning risks to thousands of subjects. This can be costly when some covariates involve analyzing biological specimens. A two-stage sampling design addresses this problem by assembling covariates and assigning risks only to those subjects most informative for estimating key parameters. We use this design to estimate the outcome probabilities needed to evaluate model performance and we provide theoretical and bootstrap estimates of their variances. We also describe how to choose two-stage designs with minimal efficiency loss for a parameter of interest when the quantities determining optimality are unknown at the time of design. We illustrate these methods by using subjects in the California Teachers Study to validate ovarian cancer risk models. We find that a design with optimal efficiency for one performance parameter need not be so for others, and trade-offs will be required. A two-stage design that samples all outcome-positive subjects and more outcome-negative than censored subjects will perform well in most circumstances. The methods are implemented in Risk Model Assessment Program, an R program freely available at http://med.stanford.edu/epidemiology/two-stage.html.
我们提出了一种经济高效的抽样设计和估计程序,用于使用右删失队列数据验证个人风险模型。验证过程包括在一个风险模型(独立于数据指定)中使用每个受试者在队列进入时确定的协变量,为其分配在未来时间段内出现不良结局的概率。然后根据分配风险的大小对受试者进行分组,在每组中,将平均分配风险与使用随访数据估计的结局发生概率进行比较。这种验证存在两个复杂问题。首先,在存在右删失的情况下,估计在死亡前发生结局的概率需要竞争风险分析。其次,对于罕见结局,使用整个队列进行验证需要收集数千名受试者的协变量并为其分配风险。当一些协变量涉及分析生物标本时,这可能成本很高。两阶段抽样设计通过仅收集协变量并仅为那些对估计关键参数最具信息价值的受试者分配风险来解决此问题。我们使用这种设计来估计评估模型性能所需的结局概率,并提供其方差的理论估计和自助法估计。我们还描述了在设计时确定最优性的数量未知的情况下,如何选择效率损失最小的两阶段设计来估计感兴趣的参数。我们通过使用加利福尼亚教师研究中的受试者来验证卵巢癌风险模型来说明这些方法。我们发现,对于一个性能参数具有最优效率的设计对于其他参数不一定如此,需要进行权衡。在大多数情况下,一种对所有结局阳性受试者以及比删失受试者更多的结局阴性受试者进行抽样的两阶段设计将表现良好。这些方法在风险模型评估程序(Risk Model Assessment Program)中实现,这是一个可在http://med.stanford.edu/epidemiology/two-stage.html免费获取的R程序。