Suppr超能文献

G 蛋白偶联受体介导的 G 蛋白激活中的构象灵活性和结构动态:一个视角。

Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective.

机构信息

Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.

出版信息

J Mol Biol. 2013 Jul 10;425(13):2288-98. doi: 10.1016/j.jmb.2013.04.011. Epub 2013 Apr 16.

Abstract

Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.

摘要

G 蛋白及其同源受体的结构和动力学,无论是单独的还是复合物的,都越来越容易被实验技术所获取。理解控制这些变化的构象变化和时间线,可以为配体结合和相关 G 蛋白激活过程提供新的见解。实验系统可能涉及使用或稳定非天然环境。这可能会使我们对结构和动态特征的理解变得复杂,例如离子锁、色氨酸转换和 G 蛋白灵活性。虽然受体的跨膜螺旋和 Gα 的 C 末端α5 螺旋中的元素经历了明确的结构变化,但受构象灵活性影响的区域可能在微调激活受体和 G 蛋白之间的相互作用方面非常重要。计算和实验方法的结合将继续提供强大的工具来探测受体介导的 G 蛋白激活的构象和动力学。

相似文献

1
Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective.
J Mol Biol. 2013 Jul 10;425(13):2288-98. doi: 10.1016/j.jmb.2013.04.011. Epub 2013 Apr 16.
2
Mechanistic insights into GPCR-G protein interactions.
Curr Opin Struct Biol. 2016 Dec;41:247-254. doi: 10.1016/j.sbi.2016.11.005. Epub 2016 Nov 18.
4
Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
J Mol Biol. 2011 Dec 9;414(4):611-23. doi: 10.1016/j.jmb.2011.10.015. Epub 2011 Oct 20.
5
Exploring the free-energy landscape of GPCR activation.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10327-10332. doi: 10.1073/pnas.1810316115. Epub 2018 Sep 26.
6
Structure and dynamics of GPCR signaling complexes.
Nat Struct Mol Biol. 2018 Jan;25(1):4-12. doi: 10.1038/s41594-017-0011-7. Epub 2018 Jan 8.
7
Structural features of the G-protein/GPCR interactions.
Biochim Biophys Acta. 2014 Jan;1840(1):16-33. doi: 10.1016/j.bbagen.2013.08.027. Epub 2013 Sep 7.
8
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
10
Structural mechanism of G protein activation by G protein-coupled receptor.
Eur J Pharmacol. 2015 Sep 15;763(Pt B):214-22. doi: 10.1016/j.ejphar.2015.05.016. Epub 2015 May 14.

引用本文的文献

1
Deciphering molecular determinants of GPBAR1-Gs protein interactions by HDX-MS and cryo-EM.
Sci Rep. 2025 Aug 26;15(1):31517. doi: 10.1038/s41598-025-16529-w.
3
The Role and Mechanisms of G protein-coupled receptors in Parkinson's disease.
Neurol Sci. 2025 Jun 11. doi: 10.1007/s10072-025-08260-1.
4
Exploring G Protein-Coupled Receptors in Hematological Cancers.
ACS Pharmacol Transl Sci. 2024 Nov 21;7(12):4000-4009. doi: 10.1021/acsptsci.4c00473. eCollection 2024 Dec 13.
5
Molecular basis for chemokine recognition and activation of XCR1.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2405732121. doi: 10.1073/pnas.2405732121. Epub 2024 Nov 20.
6
The Effects of Age on Prostatic Responses to Oxytocin and the Effects of Antagonists.
Biomedicines. 2023 Nov 1;11(11):2956. doi: 10.3390/biomedicines11112956.
7
Alchemical Free Energy Calculations on Membrane-Associated Proteins.
J Chem Theory Comput. 2023 Nov 14;19(21):7437-7458. doi: 10.1021/acs.jctc.3c00365. Epub 2023 Oct 30.
8
Pro-phagocytic function and structural basis of GPR84 signaling.
Nat Commun. 2023 Sep 14;14(1):5706. doi: 10.1038/s41467-023-41201-0.
9
Association of Neurokinin-1 Receptor Signaling Pathways with Cancer.
Curr Med Chem. 2024;31(39):6460-6486. doi: 10.2174/0929867331666230818110812.
10
Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling.
Pharmacol Rev. 2023 Nov;75(6):1119-1139. doi: 10.1124/pharmrev.122.000584. Epub 2023 Jul 10.

本文引用的文献

1
Molecular dynamics simulations of the adenosine A2a receptor: structural stability, sampling, and convergence.
J Chem Inf Model. 2013 May 24;53(5):1168-78. doi: 10.1021/ci300610w. Epub 2013 Apr 25.
2
Linking receptor activation to changes in Sw I and II of Gα proteins.
J Struct Biol. 2013 Oct;184(1):63-74. doi: 10.1016/j.jsb.2013.02.016. Epub 2013 Mar 4.
3
Molecular signatures of G-protein-coupled receptors.
Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.
4
The dynamic process of β(2)-adrenergic receptor activation.
Cell. 2013 Jan 31;152(3):532-42. doi: 10.1016/j.cell.2013.01.008.
5
Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3463-72. doi: 10.1073/pnas.1210373109. Epub 2012 Nov 14.
7
Predictions for cholesterol interaction sites on the A2A adenosine receptor.
J Am Chem Soc. 2012 Oct 10;134(40):16512-5. doi: 10.1021/ja307532d. Epub 2012 Sep 26.
8
GDP release preferentially occurs on the phosphate side in heterotrimeric G-proteins.
PLoS Comput Biol. 2012;8(7):e1002595. doi: 10.1371/journal.pcbi.1002595. Epub 2012 Jul 19.
10
Structural basis for allosteric regulation of GPCRs by sodium ions.
Science. 2012 Jul 13;337(6091):232-6. doi: 10.1126/science.1219218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验