Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
J Mol Biol. 2013 Jul 10;425(13):2288-98. doi: 10.1016/j.jmb.2013.04.011. Epub 2013 Apr 16.
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.
G 蛋白及其同源受体的结构和动力学,无论是单独的还是复合物的,都越来越容易被实验技术所获取。理解控制这些变化的构象变化和时间线,可以为配体结合和相关 G 蛋白激活过程提供新的见解。实验系统可能涉及使用或稳定非天然环境。这可能会使我们对结构和动态特征的理解变得复杂,例如离子锁、色氨酸转换和 G 蛋白灵活性。虽然受体的跨膜螺旋和 Gα 的 C 末端α5 螺旋中的元素经历了明确的结构变化,但受构象灵活性影响的区域可能在微调激活受体和 G 蛋白之间的相互作用方面非常重要。计算和实验方法的结合将继续提供强大的工具来探测受体介导的 G 蛋白激活的构象和动力学。