College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
Sensors (Basel). 2013 Apr 19;13(4):5302-16. doi: 10.3390/s130405302.
In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm.
在本文中,我们将声学矢量传感器阵列参数估计问题与最初应用于生物学和化学的平行谱线具有线性相关性(PARALIND)模型相结合。利用 PARALIND 分解方法,我们针对未知位置的任意间隔声学矢量传感器阵列提出了一种盲相干二维到达方向(2D-DOA)估计算法。该算法可以很好地实现相干和非相干角度估计的自动配对方位角和仰角,以及源的配对相关矩阵。与传统的相干角度估计算法(如旋转不变技术(ESPRIT)的前向-后向空间平滑(FBSS)信号参数估计)相比,我们的算法不仅具有更好的角度估计性能,即使对于近距离的声源也是如此,而且还可用于任意阵列。仿真结果验证了我们算法的有效性。