Suppr超能文献

多项逻辑回归集成

Multinomial logistic regression ensembles.

作者信息

Lee Kyewon, Ahn Hongshik, Moon Hojin, Kodell Ralph L, Chen James J

机构信息

Department of Applied Mathematics and Statistics , Stony Brook University , Stony Brook , NY, USA.

出版信息

J Biopharm Stat. 2013 May;23(3):681-94. doi: 10.1080/10543406.2012.756500.

Abstract

This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the proposed method can handle a huge database without a constraint needed for analyzing high-dimensional data, and the random partition can improve the prediction accuracy by reducing the correlation among base classifiers. The proposed method is implemented using R, and the performance including overall prediction accuracy, sensitivity, and specificity for each category is evaluated on two real data sets and simulation data sets. To investigate the quality of prediction in terms of sensitivity and specificity, the area under the receiver operating characteristic (ROC) curve (AUC) is also examined. The performance of the proposed model is compared to a single multinomial logit model and it shows a substantial improvement in overall prediction accuracy. The proposed method is also compared with other classification methods such as the random forest, support vector machines, and random multinomial logit model.

摘要

本文提出了一种使用多项逻辑回归模型集成来解决多类分类问题的方法。在由预测变量的随机划分构成的集成中,多项逻辑模型被用作基础分类器。多项逻辑模型可应用于特征空间的每个互斥子集,无需进行变量选择。通过组合多个模型,该方法能够处理庞大的数据库,而无需分析高维数据所需的约束条件,并且随机划分可以通过降低基础分类器之间的相关性来提高预测准确性。该方法使用R语言实现,并在两个真实数据集和模拟数据集上评估了包括总体预测准确性、敏感性和各类别特异性在内的性能。为了从敏感性和特异性方面研究预测质量,还检查了接收器操作特征(ROC)曲线下的面积(AUC)。将所提出模型的性能与单个多项逻辑模型进行比较,结果表明总体预测准确性有显著提高。该方法还与其他分类方法进行了比较,如随机森林、支持向量机和随机多项逻辑模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验