Suppr超能文献

系统结构-活性关系预测黄酮类化合物如何与人雄激素受体结合以发挥其拮抗活性。

The systematic structure-activity relationship to predict how flavones bind to human androgen receptor for their antagonistic activity.

机构信息

Department of Environmental Bioscience, Meijo University, Nagoya 468-8502, Japan.

出版信息

Bioorg Med Chem. 2013 Jun 1;21(11):2968-74. doi: 10.1016/j.bmc.2013.03.060. Epub 2013 Apr 2.

Abstract

Although flavones act as potent androgen receptor (AR) antagonists, it remains unclear how flavones interact with AR. The aim of this in silico study was to investigate the molecular recognition processes of newly synthesized 5,4'-difluoroflavone with the highest activity (IC50 value=0.19 μM) in the AR-ligand binding domain (AR-LBD). The results demonstrated that at its 4'-position of 5,4'-difluoroflavone the substituents may face Arg752 and that in AR-LBD, the submolecular bulk of substituents is unfavorable for AR antagonists and the negative electrostatic interaction site prefers the stronger hydrogen bond capability of substituents of AR antagonists. The prediction model is a valuable tool for designing a novel AR antagonist.

摘要

虽然黄酮类化合物作为有效的雄激素受体 (AR) 拮抗剂,但黄酮类化合物如何与 AR 相互作用仍不清楚。本计算机模拟研究的目的是研究具有最高活性(IC50 值=0.19 μM)的新合成的 5,4'-二氟黄酮与 AR-配体结合域 (AR-LBD) 中 AR 的分子识别过程。结果表明,在 5,4'-二氟黄酮的 4'-位置,取代基可能面对 Arg752,在 AR-LBD 中,取代基的亚分子体积不利于 AR 拮抗剂,负静电相互作用位点更倾向于 AR 拮抗剂取代基的更强氢键能力。该预测模型是设计新型 AR 拮抗剂的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验