Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany.
Nat Commun. 2013;4:1763. doi: 10.1038/ncomms2775.
Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.
从爱因斯坦关于狭义相对论的开创性工作开始,人们就一直设想通过使镜子接近光速运动来反射光线,从而产生明亮的 X 射线脉冲。对于理想的相对论反射镜,由于光子能量的增加和伴随的时间压缩,反射辐射的峰值功率可以大大超过入射辐射的功率。在这里,我们首次证明,高强度激光脉冲与独立的纳米级薄箔相互作用可以产生致密的相对论电子反射镜。实验表明,这些反射镜结构可以将相反方向传播的激光脉冲的频率从红外相干地移动到极紫外,其效率比非相干散射高 10(4)倍以上。我们的结果阐明了激光产生的电子反射镜的反射过程,并为相对论反射镜结构的未来发展提供了明确的指导。