Saldaña Laura, Crespo Lara, Bensiamar Fátima, Arruebo Manuel, Vilaboa Nuria
Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
J Biomed Mater Res A. 2014 Jan;102(1):128-40. doi: 10.1002/jbm.a.34674. Epub 2013 Apr 24.
The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates.
骨组织与骨科植入物之间的相互作用在很大程度上受到骨 - 植入物界面处机械力的影响,但是表面形貌、机械刺激和细胞行为之间的相互作用非常复杂,目前尚未得到充分理解。本研究报告了机械拉伸对附着在具有不同粗糙度的金属基底上的人间充质干细胞(hMSCs)的影响。使用磁性胶原包被颗粒和电磁系统,对培养在光滑和粗糙不锈钢表面上的hMSCs的质膜施加可控力。在静态条件下,粗糙样品上粘着斑激酶(p-FAK)活性形式(Tyr-397)的磷酸化程度、前列腺素E2(PGE2)和血管内皮生长因子(VEGF)水平升高。在粗糙基底上细胞活力和纤连蛋白产生减少,而hMSCs在两个表面上向成骨细胞谱系成熟的程度相似。在两个表面上施加力后,PGE2产生以及骨保护素/核因子κB受体激活剂配体比值增加,尽管在光滑基底上增加的程度更大。在粗糙表面上,机械刺激相当迅速地诱导了Tyr-397处的p-FAK,而培养在光滑样品上的细胞在受到拉力时未能激活该激酶。机械力增强了光滑表面上的VEGF分泌并降低了细胞活力、纤连蛋白水平和成骨细胞成熟度,但在粗糙样品上则没有。本研究中使用的磁铁矿珠模型非常适合表征培养在金属表面上的hMSCs对拉力的反应,收集的数据表明一种机制,即由FAK驱动的机械转导对于干细胞在金属基底上的生长和功能至关重要。