Suppr超能文献

新生轮状病毒 G10P[11] 株的 VP8* 结构域与 II 型前体糖结合。

The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans.

机构信息

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.

出版信息

J Virol. 2013 Jul;87(13):7255-64. doi: 10.1128/JVI.03518-12. Epub 2013 Apr 24.

Abstract

Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.

摘要

天然存在的牛-人重组轮状病毒,具有 P[11] VP4 基因型,对新生儿具有嗜性。 Spike 蛋白 VP4 的 VP8结构域与唾液酸的相互作用被认为是轮状病毒感染力的关键介质。然而,最近的研究表明,非唾液酸化糖缀合物,包括组织血型抗原(HBGA),在人类轮状病毒的感染性中起作用。我们试图确定重组新生 G10P[11]病毒的牛轮状病毒衍生的 VP8是否与迄今尚未表征的聚糖相互作用。在超过 600 种聚糖的阵列筛选中,VP8* P[11]显示出与具有 Galβ1-4GlcNAc 基序的聚糖的特异性结合,该基序形成 II 型聚糖的核心结构,是 H 型 II HBGA 的前体。糖结合的特异性通过血凝试验得到证实;GST-VP8* P[11]可凝集 O、A 和 B 型红细胞以及脐带血红细胞。此外,在 CHO 细胞中表达 H 型 II HBGA 可显著增强 G10P[11]的感染性。使用实验室衍生的源自唾液酸结合轮状病毒 SA11-4F 和牛 G10P[11]轮状病毒 B223 的重组病毒,证实了牛源 VP4 对这种增强的感染性是必不可少的。尚未报道任何轮状病毒 VP4 与核心糖单元结合。大多数细胞类型中都有核心聚糖的组成性合成,并且认为这些聚糖的修饰是发育调节的。这些研究为理解新生儿轮状病毒感染提供了第一个分子基础,表明新生儿发育过程中的聚糖修饰可能介导了新生病毒的年龄限制感染性。

相似文献

1
The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans.
J Virol. 2013 Jul;87(13):7255-64. doi: 10.1128/JVI.03518-12. Epub 2013 Apr 24.
2
Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection.
J Virol. 2014 Apr;88(8):4558-71. doi: 10.1128/JVI.03431-13. Epub 2014 Feb 5.
5
Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses.
Mol Cell Proteomics. 2014 Nov;13(11):2944-60. doi: 10.1074/mcp.M114.039875. Epub 2014 Jul 21.
7
Characterization of Sialic Acid-Independent Simian Rotavirus Mutants in Viral Infection and Pathogenesis.
J Virol. 2023 Jan 31;97(1):e0139722. doi: 10.1128/jvi.01397-22. Epub 2023 Jan 5.
8
Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands.
J Virol. 2018 May 14;92(11). doi: 10.1128/JVI.00442-18. Print 2018 Jun 1.
9
Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses.
Mol Cell Proteomics. 2014 Nov;13(11):2961-74. doi: 10.1074/mcp.M114.039925. Epub 2014 Jul 21.
10
Milk lactose protects against porcine group A rotavirus infection.
Front Microbiol. 2022 Aug 17;13:989242. doi: 10.3389/fmicb.2022.989242. eCollection 2022.

引用本文的文献

1
Specific binding of human P[28] rotavirus VP8* protein to blood group ABH antigens on type 1 chains.
PLoS Pathog. 2025 Jul 21;21(7):e1013298. doi: 10.1371/journal.ppat.1013298. eCollection 2025 Jul.
4
The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2.
PLoS Pathog. 2024 Apr 4;20(4):e1011750. doi: 10.1371/journal.ppat.1011750. eCollection 2024 Apr.
5
The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca.
bioRxiv. 2023 Oct 16:2023.10.15.562449. doi: 10.1101/2023.10.15.562449.
7
Genome analyses of species A rotavirus isolated from various mammalian hosts in Northern Ireland during 2013-2016.
Virus Evol. 2023 Jul 4;9(2):vead039. doi: 10.1093/ve/vead039. eCollection 2023.
9
Intestinal mucin-type -glycans: the major players in the host-bacteria-rotavirus interactions.
Gut Microbes. 2023 Jan-Dec;15(1):2197833. doi: 10.1080/19490976.2023.2197833.

本文引用的文献

1
Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens.
J Virol. 2012 Sep;86(18):9899-910. doi: 10.1128/JVI.00979-12. Epub 2012 Jul 3.
2
Severity of rotavirus gastroenteritis in Indian children requiring hospitalization.
Vaccine. 2012 Apr 27;30 Suppl 1:A167-72. doi: 10.1016/j.vaccine.2011.07.145.
4
Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner.
J Virol. 2012 May;86(9):4833-43. doi: 10.1128/JVI.05507-11. Epub 2012 Feb 15.
5
Protective effect of natural rotavirus infection in an Indian birth cohort.
N Engl J Med. 2011 Jul 28;365(4):337-46. doi: 10.1056/NEJMoa1006261.
8
Effect of human rotavirus vaccine on severe diarrhea in African infants.
N Engl J Med. 2010 Jan 28;362(4):289-98. doi: 10.1056/NEJMoa0904797.
9
Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity.
J Biol Chem. 2010 Feb 19;285(8):5759-75. doi: 10.1074/jbc.M109.068353. Epub 2009 Dec 1.
10
Global mortality associated with rotavirus disease among children in 2004.
J Infect Dis. 2009 Nov 1;200 Suppl 1:S9-S15. doi: 10.1086/605025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验