Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Langmuir. 2013 May 7;29(18):5599-608. doi: 10.1021/la400547a. Epub 2013 Apr 26.
With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).
随着沸石和金属有机骨架(MOFs)数量的不断增加,需要计算方法来筛选结构数据库,以确定最适合感兴趣应用的结构。我们开发了基于数学优化的新方法,通过考虑可能途径的传输能量成本,来预测沸石和 MOFs 在三维空间中的形状选择性。我们的方法应用于超过 1800 种微孔材料的数据库,包括沸石、MOFs、沸石咪唑酯骨架和假设的 MOFs。为气体分离(CO2/N2、CO2/CH4 和 CO2/H2)、空气分离(O2/N2)和化学品(丙烷/丙烯、乙烷/乙烯、苯乙烯/乙苯和二甲苯)应用识别了新材料。