Suppr超能文献

两个独立二项比例的贝叶斯非劣效性检验。

A Bayesian non-inferiority test for two independent binomial proportions.

作者信息

Kawasaki Yohei, Miyaoka Etsuo

机构信息

Biostatistics Section, Department of Clinical Research and Informatics, Clinical Science Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.

出版信息

Pharm Stat. 2013 Jul-Aug;12(4):201-6. doi: 10.1002/pst.1571. Epub 2013 Apr 29.

Abstract

In drug development, non-inferiority tests are often employed to determine the difference between two independent binomial proportions. Many test statistics for non-inferiority are based on the frequentist framework. However, research on non-inferiority in the Bayesian framework is limited. In this paper, we suggest a new Bayesian index τ = P(π₁  > π₂-Δ₀|X₁, X₂), where X₁ and X₂ denote binomial random variables for trials n1 and n₂, and parameters π₁ and π₂ , respectively, and the non-inferiority margin is Δ₀> 0. We show two calculation methods for τ, an approximate method that uses normal approximation and an exact method that uses an exact posterior PDF. We compare the approximate probability with the exact probability for τ. Finally, we present the results of actual clinical trials to show the utility of index τ.

摘要

在药物研发中,非劣效性试验常被用于确定两个独立二项比例之间的差异。许多非劣效性的检验统计量基于频率主义框架。然而,贝叶斯框架下关于非劣效性的研究有限。在本文中,我们提出了一个新的贝叶斯指标τ = P(π₁ > π₂ - Δ₀|X₁, X₂),其中X₁和X₂分别表示试验n₁和n₂的二项随机变量,参数分别为π₁和π₂,非劣效性界值为Δ₀ > 0。我们展示了τ的两种计算方法,一种是使用正态近似的近似方法,另一种是使用精确后验概率密度函数的精确方法。我们将τ的近似概率与精确概率进行比较。最后,我们给出实际临床试验的结果以展示指标τ的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验