Suppr超能文献

与初级电子转移相偶联的质子位移在红假单胞菌反应中心。

Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center.

机构信息

Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

出版信息

J Phys Chem B. 2013 Sep 26;117(38):11162-8. doi: 10.1021/jp401195t. Epub 2013 May 17.

Abstract

Using first-principles molecular dynamics (AIMD) and constrained density functional theory (CDFT) we identify the pathway of primary electron transfer in the R. Sphaeroides reaction center from the special pair excited state (P*) to the accessory bacteriochlorophyll (BA). Previous AIMD simulations on the special pair (PLPM) predicted a charge-transfer intermediate formation through the excited-state relaxation along a reaction coordinate characterized by the rotation of an axial histidine (HisM202). To account for the full electron transfer we extend the model to include the primary acceptor BA. In this extended model, the LUMO is primarily localized on the acceptor BA and extends over an interstitial water (water A) that is known to influence the rate of electron transfer (Potter et al. Biochemistry 2005 280, 27155-27164). A vibrational analysis of the dynamical trajectories gives a frequency of 30-35 cm(-1) for a molecular motion involving the hydrogen-bond network around water A, in good agreement with experimental findings (Yakovlev et al. Biochemistry, 2003, 68, 603-610). In its binding pocket water A can act as a switch by breaking and forming hydrogen bonds. With CDFT we calculate the energy required to the formation of the charge-separated state and find it to decrease along the predicted anisotropic reaction coordinate. Furthermore, we observe an increased coupling between the ground and charge-separated state. Water A adapts its hydrogen-bonding network along this reaction coordinate and weakens the hydrogen bond with HisM202. We also present AIMD simulations on the radical cation (P(•+)) showing a weakening of the hydrogen bond between HisL168 and the 3(1)-acetyl of PL. This work demonstrates how proton displacements are crucially coupled to the primary electron transfer and characterizes the reaction coordinate of the initial photoproduct formation.

摘要

我们使用第一性原理分子动力学(AIMD)和约束密度泛函理论(CDFT)来确定从特殊对激发态(P*)到辅助细菌叶绿素(BA)的 R. Sphaeroides 反应中心的初始电子转移途径。以前在特殊对(PLPM)上的 AIMD 模拟预测,通过沿着特征在于轴向组氨酸(HisM202)旋转的反应坐标的激发态松弛,会形成电荷转移中间体。为了说明完整的电子转移,我们将模型扩展到包括主要受体 BA。在这个扩展的模型中,LUMO 主要定位于受体 BA 上,并延伸到已知会影响电子转移速率的间质水(水 A)上(Potter 等人,生物化学,2005 年,280,27155-27164)。对动力学轨迹的振动分析给出了涉及水 A 周围氢键网络的分子运动的频率为 30-35 cm(-1),与实验结果吻合良好(Yakovlev 等人,生物化学,2003 年,68,603-610)。在其结合口袋中,水 A 可以通过打破和形成氢键作为开关。使用 CDFT,我们计算了形成电荷分离态所需的能量,并发现它沿着预测的各向异性反应坐标减小。此外,我们观察到基态和电荷分离态之间的耦合增加。水 A 沿着这个反应坐标调整其氢键网络,并削弱与 HisM202 的氢键。我们还展示了关于自由基阳离子(P(•+))的 AIMD 模拟,表明 HisL168 和 PL 的 3(1)-乙酰之间的氢键变弱。这项工作表明质子位移如何与初始电子转移紧密耦合,并描述了初始光产物形成的反应坐标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验