Suppr超能文献

酵母酿酒酵母中转录 RNA 的转录后加工、周转和亚细胞动态。

Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.

机构信息

Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Genetics. 2013 May;194(1):43-67. doi: 10.1534/genetics.112.147470.

Abstract

Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.

摘要

转移 RNA(tRNA)对于蛋白质合成至关重要。在真核生物中,tRNA 生物合成采用专门的 RNA 聚合酶,该酶生成初始转录物,然后必须通过多种转录后步骤进行改变,然后 tRNA 才能成为在蛋白质合成中起作用的成熟分子。在强大的酿酒酵母系统中可以采用遗传、基因组、生化和细胞生物学方法,这使得我们对 tRNA 转录后加工的理解取得了令人兴奋的进展,并对 tRNA 周转和 tRNA 亚细胞动力学有了新的认识。tRNA 加工步骤包括去除转录的前导序列和尾随序列,在 3'成熟序列上添加 CCA,对于 tRNA(His),在 5'添加 G。约 20%的酵母 tRNA 由内含子基因编码。令人惊讶的是,在酵母中,三步剪接过程去除内含子发生在细胞质中,除了 tRNA 剪接外,每个剪接酶似乎都有兼职功能。有 25 种不同的核苷修饰物是转录后添加的,这使得 tRNA 中约 15%的残基不是 A、G、U 或 C。这些修饰核苷具有许多重要功能,包括 tRNA 鉴别、翻译保真度和 tRNA 质量控制。成熟的 tRNA 非常稳定,但尽管如此,酵母细胞仍具有多种途径来降解处理不当或折叠的 tRNA。成熟的 tRNA 在细胞中也是动态的,从细胞质到细胞核再回到细胞质;这个逆行过程的机制和功能知之甚少。本文讨论了 tRNA 转录后加工、周转和亚细胞动力学的现状,强调了仍然存在的问题。

相似文献

2
Cellular dynamics of tRNAs and their genes.
FEBS Lett. 2010 Jan 21;584(2):310-7. doi: 10.1016/j.febslet.2009.11.053.
3
tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location.
Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):373-386. doi: 10.1016/j.bbagrm.2017.11.007. Epub 2017 Nov 28.
4
An interplay between transcription, processing, and degradation determines tRNA levels in yeast.
Wiley Interdiscip Rev RNA. 2013 Nov-Dec;4(6):709-22. doi: 10.1002/wrna.1190. Epub 2013 Aug 23.
5
Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae.
Nucleic Acids Symp Ser (Oxf). 2009(53):301-2. doi: 10.1093/nass/nrp151.
6
Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21042-7. doi: 10.1073/pnas.1316579110. Epub 2013 Dec 2.
7
Three tRNA nuclear exporters in S. cerevisiae: parallel pathways, preferences, and precision.
Nucleic Acids Res. 2022 Sep 23;50(17):10140-10152. doi: 10.1093/nar/gkac754.

引用本文的文献

1
Structure of fungal tRNA ligase Trl1 with RNA reveals conserved substrate-binding principles.
Nat Struct Mol Biol. 2025 Jun 25. doi: 10.1038/s41594-025-01589-3.
3
Targeting tRNA methyltransferases: from molecular mechanisms to drug discovery.
Sci China Life Sci. 2025 May 7. doi: 10.1007/s11427-024-2886-2.
5
Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids.
Mass Spectrom Rev. 2025 Jan 10. doi: 10.1002/mas.21923.
6
Optimization of ACE-tRNAs function in translation for suppression of nonsense mutations.
Nucleic Acids Res. 2024 Dec 11;52(22):14112-14132. doi: 10.1093/nar/gkae1112.
7
Dysregulation of tRNA methylation in cancer: Mechanisms and targeting therapeutic strategies.
Cell Death Discov. 2024 Jul 17;10(1):327. doi: 10.1038/s41420-024-02097-x.
8
If the 5' cap fits (wear it) - Non-canonical RNA capping.
RNA Biol. 2024 Jan;21(1):1-13. doi: 10.1080/15476286.2024.2372138. Epub 2024 Jul 15.
9
Liquid-liquid phase separation in diseases.
MedComm (2020). 2024 Jul 13;5(7):e640. doi: 10.1002/mco2.640. eCollection 2024 Jul.
10
Identification of Amino Acids in Trm734 Required for 2'--Methylation of the tRNA Wobble Residue.
ACS Omega. 2024 Jun 3;9(23):25063-25072. doi: 10.1021/acsomega.4c02313. eCollection 2024 Jun 11.

本文引用的文献

1
A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification.
Nat Chem Biol. 2013 Feb;9(2):105-11. doi: 10.1038/nchembio.1137. Epub 2012 Dec 16.
2
Extensive degradation of RNA precursors by the exosome in wild-type cells.
Mol Cell. 2012 Nov 9;48(3):409-21. doi: 10.1016/j.molcel.2012.08.018. Epub 2012 Sep 20.
3
Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance.
RNA. 2012 Oct;18(10):1934-45. doi: 10.1261/rna.033431.112. Epub 2012 Aug 24.
4
Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway.
RNA. 2012 Oct;18(10):1823-32. doi: 10.1261/rna.033597.112. Epub 2012 Aug 23.
5
Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop.
RNA. 2012 Oct;18(10):1921-33. doi: 10.1261/rna.035287.112. Epub 2012 Aug 21.
6
Biosynthesis and function of posttranscriptional modifications of transfer RNAs.
Annu Rev Genet. 2012;46:69-95. doi: 10.1146/annurev-genet-110711-155641. Epub 2012 Aug 16.
8
Structure-function analysis of Rny1 in tRNA cleavage and growth inhibition.
PLoS One. 2012;7(7):e41111. doi: 10.1371/journal.pone.0041111. Epub 2012 Jul 19.
9
RNA degradation in Saccharomyces cerevisae.
Genetics. 2012 Jul;191(3):671-702. doi: 10.1534/genetics.111.137265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验