Suppr超能文献

并非所有单核苷酸多态性(SNP)都是一样的:全基因组关联研究揭示了功能注释SNP中存在一致的富集模式。

All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs.

作者信息

Schork Andrew J, Thompson Wesley K, Pham Phillip, Torkamani Ali, Roddey J Cooper, Sullivan Patrick F, Kelsoe John R, O'Donovan Michael C, Furberg Helena, Schork Nicholas J, Andreassen Ole A, Dale Anders M

机构信息

Cognitive Sciences Graduate Program, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS Genet. 2013 Apr;9(4):e1003449. doi: 10.1371/journal.pgen.1003449. Epub 2013 Apr 25.

Abstract

Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1-FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci.

摘要

近期结果表明,全基因组关联研究(GWAS)有潜力解释许多常见复杂表型的遗传力,但缺乏可靠识别其余相关单核苷酸多态性(SNP)的方法。我们应用分层错误发现率(sFDR)方法,利用GWAS汇总统计数据中的基因富集来发现可能在独立样本中重复出现的新位点。具体而言,我们将每个SNP的连锁不平衡加权注释与名义p值相结合,以估计由不同基因类别确定的分层的真实发现率(TDR = 1 - FDR)。我们展示了不同表型在特定注释类别中多基因效应富集的一致模式,对于标记调控和编码基因元件的SNP富集程度最高,内含子中富集程度低,基因间SNP呈负富集。分层富集直接导致给定p值下TDR增加,这反映在独立样本中重复率的提高上。我们在独立的克罗恩病GWAS中展示了这一点,在那里我们发现不同基因类别之间的重复率有百倍差异。应用一种成熟的sFDR方法,我们证明了分层对于提高复杂表型GWAS功效的效用,当传统FDR和sFDR都固定为0.05时,拒绝率从身高研究中的20%增加到精神分裂症研究中的300%。我们的分析表明GWAS SNP之间存在内在分层,具有重要的概念意义,可通过统计方法加以利用以改善位点的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d02/3636284/5e33bdcce9ea/pgen.1003449.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验