Department of Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, Maryland, USA.
Tissue Eng Part A. 2013 Sep;19(17-18):2035-44. doi: 10.1089/ten.TEA.2012.0317. Epub 2013 Jun 8.
Inflammation and tissue degeneration play key roles in numerous rheumatic diseases, including osteoarthritis (OA). Efforts to reduce and effectively repair articular cartilage damage in an osteoarthritic environment are limited in their success due to the diseased environment. Treatment strategies focused on both reducing inflammation and increasing tissue production are necessary to effectively treat OA from a tissue-engineering perspective. In this work, we investigated the anti-inflammatory and tissue production capacity of a small molecule 3,4,6-O-tributanoylated-N-acetylglucosamine (3,4,6-O-Bu3GlcNAc) previously shown to inhibit the nuclear factor κB (NFκB) activity, a key transcription factor regulating inflammation. To mimic an inflammatory environment, chondrocytes were stimulated with interleukin-1β (IL-1β), a potent inflammatory cytokine. 3,4,6-O-Bu3GlcNAc exposure decreased the expression of NFκB target genes relevant to OA by IL-1β-stimulated chondrocytes after 24 h of exposure. The capacity of 3,4,6-O-Bu3GlcNAc to stimulate extracellular matrix (ECM) accumulation by IL-1β-stimulated chondrocytes was evaluated in vitro utilizing a three-dimensional hydrogel culturing system. After 21 days, 3,4,6-O-Bu3GlcNAc exposure induced quantifiable increases in both sulfated glycosaminoglycan and total collagen. Histological staining for proteoglycans and type II collagen confirmed these findings. The increased ECM accumulation was not due to the hydrolysis products of the small molecule, n-butyrate and N-acetylglucosamine (GlcNAc), as the isomeric 1,3,4-O-tributanoylated N-acetylglucosamine (1,3,4-O-Bu3GlcNAc) did not elicit a similar response. These findings demonstrate that a novel butanoylated GlcNAc derivative, 3,4,6-O-Bu3GlcNAc, has the potential to stimulate new tissue production and reduce inflammation in IL-1β-induced chondrocytes with utility for OA and other forms of inflammatory arthritis.
炎症和组织退化在许多风湿性疾病中起着关键作用,包括骨关节炎(OA)。由于患病环境的限制,减少和有效修复 OA 关节软骨损伤的努力在其成功方面受到限制。从组织工程学的角度来看,治疗策略必须既减少炎症又增加组织生成,才能有效地治疗 OA。在这项工作中,我们研究了先前显示可抑制核因子 κB(NFκB)活性的小分子 3,4,6-O-三丁酰基-N-乙酰氨基葡萄糖(3,4,6-O-Bu3GlcNAc)的抗炎和组织生成能力,NFκB 是调节炎症的关键转录因子。为了模拟炎症环境,用白细胞介素 1β(IL-1β)刺激软骨细胞,IL-1β 是一种有效的炎症细胞因子。3,4,6-O-Bu3GlcNAc 暴露可降低 24 小时后经 IL-1β 刺激的软骨细胞中与 OA 相关的 NFκB 靶基因的表达。在体外利用三维水凝胶培养系统评估了 3,4,6-O-Bu3GlcNAc 刺激经 IL-1β 刺激的软骨细胞中细胞外基质(ECM)积累的能力。21 天后,3,4,6-O-Bu3GlcNAc 暴露可使硫酸化糖胺聚糖和总胶原的含量均有可量化的增加。蛋白聚糖和 II 型胶原的组织学染色证实了这些发现。增加的 ECM 积累不是由于小分子的水解产物丁酸和 N-乙酰氨基葡萄糖(GlcNAc)引起的,因为非对映异构体 1,3,4-O-三丁酰基 N-乙酰氨基葡萄糖(1,3,4-O-Bu3GlcNAc)不会引起类似的反应。这些发现表明,新型丁酰化 GlcNAc 衍生物 3,4,6-O-Bu3GlcNAc 具有刺激新组织生成和减少 IL-1β 诱导的软骨细胞中炎症的潜力,可用于 OA 和其他形式的炎症性关节炎。