Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States.
J Phys Chem A. 2013 Jun 20;117(24):5124-31. doi: 10.1021/jp402976n. Epub 2013 May 16.
We present results of prebiotic organic synthesis in shock compressed mixtures of simple ices from quantum molecular dynamics (MD) simulations extended to close to equilibrium time scales. Given the likelihood of an inhospitable prebiotic atmosphere on early Earth, it is possible that impact processes of comets or other icy bodies were a source of prebiotic chemical compounds on the primitive planet. We observe that moderate shock pressures and temperatures within a CO2-rich icy mixture (36 GPa and 2800 K) produce a number of nitrogen containing heterocycles, which dissociate to form functionalized aromatic hydrocarbons upon expansion and cooling to ambient conditions. In contrast, higher shock conditions (48-60 GPa, 3700-4800 K) resulted in the synthesis of long carbon-chain molecules, CH4, and formaldehyde. All shock compression simulations at these conditions have produced significant quantities of simple C-N bonded compounds such as HCN, HNC, and HNCO upon expansion and cooling to ambient conditions. Our results elucidate a mechanism for impact synthesis of prebiotic molecules at realistic impact conditions that is independent of external constraints such as the presence of a catalyst, illuminating UV radiation, or pre-existing conditions on a planet.
我们展示了在接近平衡时间尺度的量子分子动力学 (MD) 模拟中,简单冰的冲击压缩混合物中进行的前生物有机合成的结果。考虑到早期地球上可能存在恶劣的前生物大气层,彗星或其他冰体的撞击过程可能是原始行星上前生物化学化合物的来源。我们观察到,在富含二氧化碳的冰混合物(36 GPa 和 2800 K)中,适度的冲击压力和温度会产生许多含氮杂环,这些杂环在膨胀和冷却到环境条件时会分解形成官能化的芳烃。相比之下,更高的冲击条件(48-60 GPa,3700-4800 K)导致长链碳分子、CH4 和甲醛的合成。在这些条件下进行的所有冲击压缩模拟在膨胀和冷却到环境条件时都会产生大量简单的 C-N 键合化合物,如 HCN、HNC 和 HNCO。我们的结果阐明了在现实冲击条件下进行前生物分子冲击合成的机制,该机制独立于外部约束,如催化剂的存在、紫外辐射或行星上预先存在的条件。