Chung Yeonseung, Dunson David B
Department of Biostatistics, Harvard School of Public Health, 655 Huntington Ave. Bldg 2, Room 435A, Boston, MA 02115, USA.
Ann Inst Stat Math. 2011 Feb 1;63(1):59-80. doi: 10.1007/s10463-008-0218-9.
As a generalization of the Dirichlet process (DP) to allow predictor dependence, we propose a local Dirichlet process (lDP). The lDP provides a prior distribution for a collection of random probability measures indexed by predictors. This is accomplished by assigning stick-breaking weights and atoms to random locations in a predictor space. The probability measure at a given predictor value is then formulated using the weights and atoms located in a neighborhood about that predictor value. This construction results in a marginal DP prior for the random measure at any specific predictor value. Dependence is induced through local sharing of random components. Theoretical properties are considered and a blocked Gibbs sampler is proposed for posterior computation in lDP mixture models. The methods are illustrated using simulated examples and an epidemiologic application.
作为狄利克雷过程(DP)的一种推广,以允许预测变量相关性,我们提出了局部狄利克雷过程(lDP)。lDP为一组由预测变量索引的随机概率随机概率测度提供先验分布。这是通过在预测变量空间中的随机位置分配折断棍子权重和原子来实现的。然后,使用位于该预测变量值邻域内的权重和原子来制定给定预测变量值处的概率测度。这种构造导致了任何特定预测变量值处随机测度的边际DP先验。通过随机成分的局部共享引入相关性。我们考虑了理论性质,并提出了一种分块吉布斯采样器用于lDP混合模型的后验计算。通过模拟示例和流行病学应用对这些方法进行了说明。