Suppr超能文献

一株新型希金斯海雷氏菌 A-471 糖苷水解酶家族 23 壳聚糖酶催化结构域的晶体结构揭示了一种独特的催化残基排列方式,用于反转壳聚糖水解。

Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis.

机构信息

Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan.

出版信息

J Biol Chem. 2013 Jun 28;288(26):18696-706. doi: 10.1074/jbc.M113.462135. Epub 2013 May 8.

Abstract

Chitinase C from Ralstonia sp. A-471 (Ra-ChiC) has a catalytic domain sequence similar to goose-type (G-type) lysozymes and, unlike other chitinases, belongs to glycohydrolase (GH) family 23. Using NMR spectroscopy, however, Ra-ChiC was found to interact only with the chitin dimer but not with the peptidoglycan fragment. Here we report the crystal structures of wild-type, E141Q, and E162Q of the catalytic domain of Ra-ChiC with or without chitin oligosaccharides. Ra-ChiC has a substrate-binding site including a tunnel-shaped cavity, which determines the substrate specificity. Mutation analyses based on this structural information indicated that a highly conserved Glu-141 acts as a catalytic acid, and that Asp-226 located at the roof of the tunnel activates a water molecule as a catalytic base. The unique arrangement of the catalytic residues makes a clear contrast to the other GH23 members and also to inverting GH19 chitinases.

摘要

来自罗尔斯顿氏菌 A-471(Ra-ChiC)的几丁质酶 C 具有与鹅型(G 型)溶菌酶相似的催化结构域序列,并且与其他几丁质酶不同,它属于糖苷水解酶(GH)家族 23。然而,通过 NMR 光谱分析发现,Ra-ChiC 仅与几丁质二聚体相互作用,而不与肽聚糖片段相互作用。在这里,我们报告了野生型、E141Q 和 E162Q 的催化结构域以及有无几丁寡糖的晶体结构。Ra-ChiC 具有包括隧道形腔在内的底物结合位点,该腔决定了底物特异性。基于该结构信息的突变分析表明,高度保守的 Glu-141 起催化酸的作用,位于隧道顶部的 Asp-226 激活水分子作为催化碱。催化残基的独特排列与其他 GH23 成员以及反转的 GH19 几丁质酶形成鲜明对比。

相似文献

3
Crystal structure of a "loopless" GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center.
Biochim Biophys Acta. 2014 Apr;1844(4):793-802. doi: 10.1016/j.bbapap.2014.02.013. Epub 2014 Feb 25.
6
Crystal structure and chitin oligosaccharide-binding mode of a 'loopful' family GH19 chitinase from rye, Secale cereale, seeds.
FEBS J. 2012 Oct;279(19):3639-3651. doi: 10.1111/j.1742-4658.2012.08723.x. Epub 2012 Sep 3.
7
Chitinolytic enzymes: catalysis, substrate binding, and their application.
Curr Protein Pept Sci. 2000 Jul;1(1):105-24. doi: 10.2174/1389203003381450.
8
Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C.
Appl Microbiol Biotechnol. 2006 Oct;72(6):1176-84. doi: 10.1007/s00253-006-0405-7. Epub 2006 Apr 6.
9
Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes.
FEBS J. 2006 Nov;273(21):4889-900. doi: 10.1111/j.1742-4658.2006.05487.x. Epub 2006 Sep 28.

引用本文的文献

2
Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of spp.
Mar Drugs. 2023 Aug 15;21(8):448. doi: 10.3390/md21080448.
3
Bacterial chitinases: genetics, engineering and applications.
World J Microbiol Biotechnol. 2022 Nov 1;38(12):252. doi: 10.1007/s11274-022-03444-9.
4
Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis.
Antonie Van Leeuwenhoek. 2022 Feb;115(2):215-231. doi: 10.1007/s10482-021-01697-2. Epub 2022 Jan 10.
5
Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium J4.
Molecules. 2021 Oct 2;26(19):5978. doi: 10.3390/molecules26195978.
6
Chitotriosidase: a marker and modulator of lung disease.
Eur Respir Rev. 2020 Apr 29;29(156). doi: 10.1183/16000617.0143-2019. Print 2020 Jun 30.
8
Analysis of glycoside hydrolases from oat (Avena sativa) seedling extract.
Bioinformation. 2019 Oct 15;15(9):678-688. doi: 10.6026/97320630015678. eCollection 2019.
9
An NMR and MD study of complexes of bacteriophage lambda lysozyme with tetra- and hexa-N-acetylchitohexaose.
Proteins. 2020 Jan;88(1):82-93. doi: 10.1002/prot.25770. Epub 2019 Jul 26.
10
A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus.
Appl Environ Microbiol. 2016 May 31;82(12):3554-3562. doi: 10.1128/AEM.00319-16. Print 2016 Jun 15.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
5
Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism.
Cell Mol Life Sci. 2009 Aug;66(15):2585-98. doi: 10.1007/s00018-009-0063-x. Epub 2009 Jun 20.
6
Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: a QM/MM metadynamics study.
J Phys Chem B. 2009 May 21;113(20):7331-9. doi: 10.1021/jp811470d.
7
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
9
X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases.
Biochemistry. 2008 Aug 12;47(32):8283-91. doi: 10.1021/bi800655u. Epub 2008 Jul 18.
10
The Buccaneer software for automated model building. 1. Tracing protein chains.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11. doi: 10.1107/S0907444906022116. Epub 2006 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验