Suppr超能文献

利用 GPU 加速从弥散加权磁共振成像中估计纤维方向。

Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs.

机构信息

Department of Computer Science, University of Murcia, Murcia, Spain.

出版信息

PLoS One. 2013 Apr 29;8(4):e61892. doi: 10.1371/journal.pone.0061892. Print 2013.

Abstract

With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation.

摘要

随着中央处理器 (CPU) 的性能实际上已经达到了极限,并行处理为具有高计算需求的应用程序提供了一种替代方案。现代图形处理单元 (GPU) 是大规模并行处理器,可以同时执行数千个轻量级进程。在这项研究中,我们提出并实现了一种基于 GPU 的并行设计,用于分析脑磁共振成像 (MRI) 的流行方法。更具体地说,我们关注的是从扩散加权 (DW) MRI 数据中提取组织结构信息的基于模型的方法。DW-MRI 通过轨迹追踪方法提供了唯一的方法来研究大脑结构连接,非侵入性和体内。我们对球棒模型的贝叶斯推断框架进行了并行化,因为它在流行的 FSL 软件包(牛津大学)的轨迹追踪工具包中实现。对于我们的实现,我们利用了计算统一设备架构 (CUDA) 编程模型。我们表明,通过马尔可夫链蒙特卡罗 (MCMC) 进行的参数估计至少加速了两个数量级,当将单个 GPU 与相应的顺序单核 CPU 版本进行比较时。当将多 GPU 与多 CPU 实现进行比较时,我们还说明了类似的加速因素(高达 120 倍)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/3643787/2471cc07767f/pone.0061892.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验