Zhang Xue Wu
College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China.
Comput Biol Chem. 2013 Aug;45:30-5. doi: 10.1016/j.compbiolchem.2013.03.003. Epub 2013 Apr 18.
In silico identification of T-cell epitopes is emerging as a new methodology for the study of epitope-based vaccines against viruses and cancer. In order to improve accuracy of prediction, we designed a novel approach, using epitope prediction methods in combination with molecular docking techniques, to identify MHC class I restricted T-cell epitopes. Analysis of the HIV-1 p24 protein and influenza virus matrix protein revealed that the present approach is effective, yielding prediction accuracy of over 80% with respect to experimental data. Subsequently, we applied such a method for prediction of T-cell epitopes in SARS coronavirus (SARS-CoV) S, N and M proteins. Based on available experimental data, the prediction accuracy is up to 90% for S protein. We suggest the use of epitope prediction methods in combination with 3D structural modelling of peptide-MHC-TCR complex to identify MHC class I restricted T-cell epitopes for use in epitope based vaccines like HIV and human cancers, which should provide a valuable step forward for the design of better vaccines and may provide in depth understanding about activation of T-cell epitopes by MHC binding peptides.
在计算机上鉴定T细胞表位正成为一种研究针对病毒和癌症的基于表位疫苗的新方法。为了提高预测准确性,我们设计了一种新方法,将表位预测方法与分子对接技术相结合,以鉴定MHC I类限制性T细胞表位。对HIV-1 p24蛋白和流感病毒基质蛋白的分析表明,目前的方法是有效的,相对于实验数据,预测准确率超过80%。随后,我们将这种方法应用于严重急性呼吸综合征冠状病毒(SARS-CoV)S、N和M蛋白中T细胞表位的预测。根据现有实验数据,S蛋白的预测准确率高达90%。我们建议将表位预测方法与肽-MHC-TCR复合物的三维结构建模相结合,以鉴定MHC I类限制性T细胞表位,用于如HIV和人类癌症等基于表位的疫苗,这应该为设计更好的疫苗向前迈出有价值的一步,并可能提供对MHC结合肽激活T细胞表位的深入理解。