Suppr超能文献

平面内流控的气泡门。

Bubble gate for in-plane flow control.

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Canada.

出版信息

Lab Chip. 2013 Jul 7;13(13):2519-27. doi: 10.1039/c3lc50075f. Epub 2013 May 13.

Abstract

We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

摘要

我们介绍了一种微型门阀,它是一种可主动控制芯片内液体流动的策略,其占地面积小于一平方毫米。气泡门阀可用于在微通道网络中实现简单、一致且可扩展的液体流动控制,与不同的批量微加工工艺和基底材料兼容,且不需要电极或活动部件。气泡门阀由两个微通道部分组成:充满液体的通道和拦截液体通道形成 T 形接头的气体通道。气泡门阀的开或关状态由在两种不同气压水平之间进行选择来确定:较低的水平对应于“开”状态,而较高的水平对应于“关”状态。在关闭过程中,气泡从气体通道侵入液体中,两侧各有一排等距间隔的微柱,直到液体完全受阻。我们使用单层软光刻和批量硅微加工工艺制造了气泡门阀,并通过理论和实验相结合的方法评估了它们的性能。我们评估了超过 300 次开-关循环期间的动态行为,并报告了不同气泡门阀结构和工作流体(去离子水、乙醇和生物缓冲液)的操作压力范围。我们获得的实验确定的气泡门阀操作范围与基于静态润湿行为的理论预测之间具有极好的一致性。我们报告了一些案例研究,说明了气泡门阀在单和多层微流控设备中的液体采样中的应用。我们通过同时寻址 128 个气泡门阀证明了我们策略的可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验