Suppr超能文献

关于 LsrK 激酶激活群体感应信号分子 2 (autoinducer-2)所必需的机制见解。

Mechanistic insights into the LsrK kinase required for autoinducer-2 quorum sensing activation.

机构信息

The Skaggs Institute for Chemical Biology and Department of Chemistry and the Worm Institute for Research and Medicine (WIRM), the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.

出版信息

J Am Chem Soc. 2013 May 29;135(21):7827-30. doi: 10.1021/ja4024989. Epub 2013 May 16.

Abstract

In enteric bacteria, the kinase LsrK catalyzes the phosphorylation of the C5-hydroxyl group in the linear form of 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). This phosphorylation is required for AI-2 sequestration in the cytoplasm and subsequent derepression of AI-2-related genes necessary for quorum development. While LsrK is a critical enzyme within the DPD quorum sensing relay system, kinetic details of this kinase have yet to be reported. A continuous UV-vis spectrophotometric assay was developed that allowed steady-state kinetic analysis of LsrK to be undertaken with the substrates ATP and DPD. The data was most consistent with a rapid equilibrium ordered mechanism with ATP binding first: kcat (7.4 ± 0.6 s(-1)), Km,ATP (150 ± 30 μM) and Km(app),DPD (1.0 ± 0.2 mM). The assay also allowed a DPD substrate profile to be conducted, which provided an unexpected biochemical disconnect between the previous agonist/antagonist cell-based reporter assay and the LsrK assay presented herein. Together these findings raise the importance of LsrK and lay the foundation not only for further understanding of this enzyme and its critical biological role but also for the rational design of regulatory molecules targeting AI-2 quorum sensing in pathogenic bacteria.

摘要

在肠道细菌中,激酶 LsrK 催化线性形式的 4,5-二羟基-2,3-戊二酮(DPD)的 C5-羟基的磷酸化,DPD 是 II 型细菌群体感应分子(AI-2)的前体。这种磷酸化对于 AI-2 在细胞质中的隔离以及随后解除与群体感应发育相关的 AI-2 相关基因的阻遏是必需的。虽然 LsrK 是 DPD 群体感应中继系统中的关键酶,但该激酶的动力学细节尚未报道。开发了一种连续的紫外可见分光光度法测定法,该方法允许使用 ATP 和 DPD 底物对 LsrK 进行稳态动力学分析。数据最符合快速平衡有序机制,ATP 首先结合:kcat(7.4 ± 0.6 s(-1)),Km,ATP(150 ± 30 μM)和 Km,app,DPD(1.0 ± 0.2 mM)。该测定法还允许进行 DPD 底物谱分析,这在先前基于细胞的激动剂/拮抗剂报告测定法和本文提出的 LsrK 测定法之间提供了一个意想不到的生化脱节。这些发现共同提高了 LsrK 的重要性,不仅为进一步了解该酶及其关键生物学作用奠定了基础,而且为针对致病性细菌的 AI-2 群体感应的调节分子的合理设计奠定了基础。

相似文献

1
Mechanistic insights into the LsrK kinase required for autoinducer-2 quorum sensing activation.
J Am Chem Soc. 2013 May 29;135(21):7827-30. doi: 10.1021/ja4024989. Epub 2013 May 16.
2
Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria.
ACS Chem Biol. 2007 Feb 20;2(2):128-36. doi: 10.1021/cb600444h. Epub 2007 Mar 2.
3
A New Cell-Based AI-2-Mediated Quorum Sensing Interference Assay in Screening of LsrK-Targeted Inhibitors.
Chembiochem. 2020 Jul 1;21(13):1918-1922. doi: 10.1002/cbic.201900773. Epub 2020 Mar 3.
4
Cross species quorum quenching using a native AI-2 processing enzyme.
ACS Chem Biol. 2010 Feb 19;5(2):223-32. doi: 10.1021/cb9002738.
5
Incorporating LsrK AI-2 quorum quenching capability in a functionalized biopolymer capsule.
Biotechnol Bioeng. 2018 Feb;115(2):278-289. doi: 10.1002/bit.26397. Epub 2017 Oct 16.
6
Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2.
Mol Microbiol. 2012 Apr;84(1):93-104. doi: 10.1111/j.1365-2958.2012.08010.x. Epub 2012 Mar 5.
8
Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues.
ACS Chem Biol. 2012 Jun 15;7(6):1023-30. doi: 10.1021/cb200524y. Epub 2012 Mar 30.
9
Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture.
J Bacteriol. 2007 Aug;189(16):6011-20. doi: 10.1128/JB.00014-07. Epub 2007 Jun 8.
10
Structural Characterization of LsrK as a Quorum Sensing Target and a Comparison between X-ray and Homology Models.
J Chem Inf Model. 2021 Mar 22;61(3):1346-1353. doi: 10.1021/acs.jcim.0c01233. Epub 2021 Mar 8.

引用本文的文献

1
Kaempferol restores the susceptibility of ESBLs to Ceftiofur.
Front Microbiol. 2024 Dec 11;15:1474919. doi: 10.3389/fmicb.2024.1474919. eCollection 2024.
2
New LsrK Ligands as AI-2 Quorum Sensing Interfering Compounds against Biofilm Formation.
J Med Chem. 2024 Oct 24;67(20):18139-18156. doi: 10.1021/acs.jmedchem.4c01266. Epub 2024 Oct 9.
4
The role of bacterial signaling networks in antibiotics response and resistance regulation.
Mar Life Sci Technol. 2022 Mar 28;4(2):163-178. doi: 10.1007/s42995-022-00126-1. eCollection 2022 May.
5
Regulatory Mechanisms between Quorum Sensing and Virulence in .
Microorganisms. 2022 Nov 9;10(11):2211. doi: 10.3390/microorganisms10112211.
6
Biofilm formation and inhibition mediated by bacterial quorum sensing.
Appl Microbiol Biotechnol. 2022 Oct;106(19-20):6365-6381. doi: 10.1007/s00253-022-12150-3. Epub 2022 Sep 12.
7
Structural Characterization of LsrK as a Quorum Sensing Target and a Comparison between X-ray and Homology Models.
J Chem Inf Model. 2021 Mar 22;61(3):1346-1353. doi: 10.1021/acs.jcim.0c01233. Epub 2021 Mar 8.
8
Tackling Antimicrobial Resistance with Small Molecules Targeting LsrK: Challenges and Opportunities.
J Med Chem. 2020 Dec 24;63(24):15243-15257. doi: 10.1021/acs.jmedchem.0c01282. Epub 2020 Nov 5.
9
Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria.
Microorganisms. 2020 Mar 17;8(3):425. doi: 10.3390/microorganisms8030425.
10
Regulatory Mechanisms of the LuxS/AI-2 System and Bacterial Resistance.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.01186-19. Print 2019 Oct.

本文引用的文献

1
AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms.
Appl Microbiol Biotechnol. 2013 Mar;97(6):2627-38. doi: 10.1007/s00253-012-4404-6. Epub 2012 Oct 4.
2
C4-alkoxy-HPD: a potent class of synthetic modulators surpassing nature in AI-2 quorum sensing.
J Am Chem Soc. 2012 Aug 22;134(33):13562-4. doi: 10.1021/ja305532y. Epub 2012 Aug 9.
3
Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues.
ACS Chem Biol. 2012 Jun 15;7(6):1023-30. doi: 10.1021/cb200524y. Epub 2012 Mar 30.
4
Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2.
Mol Microbiol. 2012 Apr;84(1):93-104. doi: 10.1111/j.1365-2958.2012.08010.x. Epub 2012 Mar 5.
7
Synthetic analogs tailor native AI-2 signaling across bacterial species.
J Am Chem Soc. 2010 Aug 18;132(32):11141-50. doi: 10.1021/ja102587w.
8
Cross species quorum quenching using a native AI-2 processing enzyme.
ACS Chem Biol. 2010 Feb 19;5(2):223-32. doi: 10.1021/cb9002738.
9
Identification of functional LsrB-like autoinducer-2 receptors.
J Bacteriol. 2009 Nov;191(22):6975-87. doi: 10.1128/JB.00976-09. Epub 2009 Sep 11.
10
LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing.
Cell Res. 2009 Nov;19(11):1258-68. doi: 10.1038/cr.2009.91. Epub 2009 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验