Suppr超能文献

应用平滑方法确定影响胃癌患者生存率的因素。

Application of smoothing methods for determining of the effecting factors on the survival rate of gastric cancer patients.

作者信息

Noorkojuri Hoda, Hajizadeh Ebrahim, Baghestani Ahmadreza, Pourhoseingholi Mohamadamin

机构信息

Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran.

出版信息

Iran Red Crescent Med J. 2013 Feb;15(2):166-72. doi: 10.5812/ircmj.8649. Epub 2013 Feb 5.

Abstract

BACKGROUND

Smoothing methods are widely used to analyze epidemiologic data, particularly in the area of environmental health where non-linear relationships are not uncommon. This study focused on three different smoothing methods in Cox models: penalized splines, restricted cubic splines and fractional polynomials.

OBJECTIVES

The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the smoothing methods in Cox model and Cox proportional hazards. Also, all models were compared to each other in order to find the best one.

MATERIALS AND METHODS

We retrospectively studied 216 patients with gastric cancer who were registered in one referral cancer registry center in Tehran, Iran. Age at diagnosis, sex, presence of metastasis, tumor size, histology type, lymph node metastasis, and pathologic stages were entered in to analysis using the Cox proportional hazards model and smoothing methods in Cox model. The SPSS version 18.0 and R version 2.14.1 were used for data analysis. These models compared with Akaike information criterion.

RESULTS

In this study, The 5 year survival rate was 30%. The Cox proportional hazards, penalized spline and fractional polynomial models let to similar results and Akaike information criterion showed a better performance for these three models comparing to the restricted cubic spline. Also, P-value and likelihood ratio test in restricted cubic spline was greater than other models. Note that the best model is indicated by the lowest Akaike information criterion.

CONCLUSIONS

The use of smoothing methods helps us to eliminate non-linear effects but it is more appropriate to use Cox proportional hazards model in medical data because of its' ease of interpretation and capability of modeling both continuous and discrete covariates. Also, Cox proportional hazards model and smoothing methods analysis identified that age at diagnosis and tumor size were independent prognostic factors for the survival of patients with gastric cancer (P < 0.05). According to these results the early detection of patients at younger age and in primary stages may be important to increase survival.

摘要

背景

平滑方法广泛应用于流行病学数据的分析,尤其是在环境健康领域,其中非线性关系并不罕见。本研究聚焦于Cox模型中的三种不同平滑方法:惩罚样条、受限立方样条和分数多项式。

目的

本研究旨在使用Cox模型和Cox比例风险模型中的平滑方法,评估预后因素对胃癌患者生存的影响。此外,对所有模型进行相互比较以找出最佳模型。

材料与方法

我们回顾性研究了在伊朗德黑兰一家转诊癌症登记中心登记的216例胃癌患者。使用Cox比例风险模型和Cox模型中的平滑方法,将诊断时的年龄、性别、转移情况、肿瘤大小、组织学类型、淋巴结转移和病理分期纳入分析。使用SPSS 18.0版和R 2.14.1版进行数据分析。这些模型通过赤池信息准则进行比较。

结果

在本研究中,5年生存率为30%。Cox比例风险模型、惩罚样条模型和分数多项式模型得出了相似的结果,赤池信息准则显示这三个模型比受限立方样条模型表现更好。此外,受限立方样条模型中的P值和似然比检验大于其他模型。请注意,最佳模型由最低的赤池信息准则表示。

结论

使用平滑方法有助于我们消除非线性效应,但由于Cox比例风险模型易于解释且能够对连续和离散协变量进行建模,因此在医学数据中使用该模型更为合适。此外,Cox比例风险模型和平滑方法分析确定,诊断时的年龄和肿瘤大小是胃癌患者生存的独立预后因素(P < 0.05)。根据这些结果,早期发现年龄较小且处于初级阶段的患者可能对提高生存率很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54b/3652506/e3a44b3fbc1a/ircmj-15-166-i001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验