Suppr超能文献

纤维方向对再生关节软骨表面摩擦性能和损伤的影响。

Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces.

机构信息

Tribology Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom .

出版信息

Tissue Eng Part A. 2013 Oct;19(19-20):2300-10. doi: 10.1089/ten.TEA.2012.0580. Epub 2013 Jul 27.

Abstract

Articular cartilage provides a low-friction, wear-resistant surface for diarthrodial joints. Due to overloading and overuse, articular cartilage is known to undergo significant wear and degeneration potentially resulting in osteoarthritis (OA). Regenerative medicine strategies offer a promising solution for the treatment of articular cartilage defects and potentially localized early OA. Such strategies rely on the development of materials to restore some aspects of cartilage. In this study, microfibrous poly(ɛ-caprolactone) scaffolds of varying fiber orientations (random and aligned) were cultured with bovine chondrocytes for 4 weeks in vitro, and the mechanical and frictional properties were evaluated. Mechanical properties were quantified using unconfined compression and tensile testing techniques. Frictional properties were investigated at physiological compressive strains occurring in native articular cartilage. Scaffolds were sheared along the fiber direction, perpendicular to the fiber direction and in random orientation. The evolution of damage as a result of shear was evaluated via white light interferometry and scanning electron microscopy. As expected, the fiber orientation strongly affected the tensile properties as well as the compressive modulus of the scaffolds. Fiber orientation did not significantly affect the equilibrium frictional coefficient, but it was, however, a key factor in dictating the evolution of surface damage on the surface. Scaffolds shear tested perpendicular to the fiber orientation displayed the highest surface damage. Our results suggest that the fiber orientation of the scaffold implanted in the joint could strongly affect its resistance to damage due to shear. Scaffold fiber orientation should thus be carefully considered when using microfibrous scaffolds.

摘要

关节软骨为滑膜关节提供了一个低摩擦、耐磨损的表面。由于超负荷和过度使用,关节软骨会发生明显的磨损和退化,从而导致骨关节炎(OA)。再生医学策略为治疗关节软骨缺损和潜在的局部早期 OA 提供了一个有前途的解决方案。这些策略依赖于开发材料来恢复软骨的某些方面。在这项研究中,不同纤维取向(随机和定向)的微纤维聚(ε-己内酯)支架在体外与牛软骨细胞培养 4 周,评估了它们的力学和摩擦性能。使用无约束压缩和拉伸测试技术来量化力学性能。在发生在天然关节软骨中的生理压缩应变下研究了摩擦性能。支架沿纤维方向、垂直于纤维方向和随机方向进行剪切。通过白光干涉测量和扫描电子显微镜评估由于剪切而导致的损伤演变。正如预期的那样,纤维取向强烈影响支架的拉伸性能和压缩模量。纤维取向对平衡摩擦系数没有显著影响,但它是决定表面损伤演变的关键因素。垂直于纤维取向进行剪切测试的支架显示出最高的表面损伤。我们的结果表明,关节内植入的支架的纤维取向可能会强烈影响其对剪切损伤的抵抗力。因此,在使用微纤维支架时,应仔细考虑支架的纤维取向。

相似文献

1
Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces.
Tissue Eng Part A. 2013 Oct;19(19-20):2300-10. doi: 10.1089/ten.TEA.2012.0580. Epub 2013 Jul 27.
3
Anisotropic fibrous scaffolds for articular cartilage regeneration.
Tissue Eng Part A. 2012 Oct;18(19-20):2073-83. doi: 10.1089/ten.TEA.2011.0606. Epub 2012 Aug 3.
6
Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
Biomaterials. 2004 Aug;25(18):4149-61. doi: 10.1016/j.biomaterials.2003.10.056.
7
Combinatorial scaffold morphologies for zonal articular cartilage engineering.
Acta Biomater. 2014 May;10(5):2065-75. doi: 10.1016/j.actbio.2013.12.030. Epub 2013 Dec 25.
8
Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair.
Biomaterials. 2011 Feb;32(4):1068-79. doi: 10.1016/j.biomaterials.2010.09.073. Epub 2010 Oct 27.
9
Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
J Mech Behav Biomed Mater. 2015 Nov;51:169-83. doi: 10.1016/j.jmbbm.2015.06.033. Epub 2015 Jul 16.

引用本文的文献

1
Can we achieve biomimetic electrospun scaffolds with gelatin alone?
Front Bioeng Biotechnol. 2023 Jul 12;11:1160760. doi: 10.3389/fbioe.2023.1160760. eCollection 2023.
4
In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair.
Biomaterials. 2022 Jul;286:121548. doi: 10.1016/j.biomaterials.2022.121548. Epub 2022 May 2.
6
Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges.
Bioact Mater. 2021 May 28;6(12):4830-4855. doi: 10.1016/j.bioactmat.2021.05.011. eCollection 2021 Dec.
7
Physicochemical Properties and Biocompatibility of Electrospun Polycaprolactone/Gelatin Nanofibers.
Int J Environ Res Public Health. 2021 Apr 29;18(9):4764. doi: 10.3390/ijerph18094764.
9
Integrational Technologies for the Development of Three-Dimensional Scaffolds as Platforms in Cartilage Tissue Engineering.
ACS Omega. 2020 May 27;5(22):12623-12636. doi: 10.1021/acsomega.9b04022. eCollection 2020 Jun 9.
10
Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations.
NPJ Regen Med. 2019 May 30;4:12. doi: 10.1038/s41536-019-0074-7. eCollection 2019.

本文引用的文献

1
Anisotropic fibrous scaffolds for articular cartilage regeneration.
Tissue Eng Part A. 2012 Oct;18(19-20):2073-83. doi: 10.1089/ten.TEA.2011.0606. Epub 2012 Aug 3.
2
Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
Biomaterials. 2012 Apr;33(12):3375-87. doi: 10.1016/j.biomaterials.2012.01.033. Epub 2012 Feb 7.
3
Quantitative mapping of scleral fiber orientation in normal rat eyes.
Invest Ophthalmol Vis Sci. 2011 Dec 28;52(13):9684-93. doi: 10.1167/iovs.11-7894.
4
On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts.
J Phys Condens Matter. 2009 May 6;21(18):185002. doi: 10.1088/0953-8984/21/18/185002. Epub 2009 Mar 11.
5
Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study.
Osteoarthritis Cartilage. 2011 Oct;19(10):1219-27. doi: 10.1016/j.joca.2011.07.004. Epub 2011 Jul 23.
6
Exploring and exploiting chemistry at the cell surface.
Nat Chem. 2011 Jul 22;3(8):582-9. doi: 10.1038/nchem.1090.
7
The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
J Biomech. 2011 Jul 28;44(11):2015-20. doi: 10.1016/j.jbiomech.2011.04.015. Epub 2011 Jun 15.
8
Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review.
Osteoarthritis Cartilage. 2011 Jul;19(7):779-91. doi: 10.1016/j.joca.2011.02.010. Epub 2011 Feb 17.
9
The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts.
Biomaterials. 2011 Feb;32(4):1032-40. doi: 10.1016/j.biomaterials.2010.08.100. Epub 2010 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验