Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
J Gen Physiol. 2013 Jun;141(6):705-20. doi: 10.1085/jgp.201210930.
Lysosomes must maintain an acidic luminal pH to activate hydrolytic enzymes and degrade internalized macromolecules. Acidification requires the vacuolar-type H(+)-ATPase to pump protons into the lumen and a counterion flux to neutralize the membrane potential created by proton accumulation. Early experiments suggested that the counterion was chloride, and more recently a pathway consistent with the ClC-7 Cl(-)/H(+) antiporter was identified. However, reports that the steady-state luminal pH is unaffected in ClC-7 knockout mice raise questions regarding the identity of the carrier and the counterion. Here, we measure the current-voltage characteristics of a mammalian ClC-7 antiporter, and we use its transport properties, together with other key ion regulating elements, to construct a mathematical model of lysosomal pH regulation. We show that results of in vitro lysosome experiments can only be explained by the presence of ClC-7, and that ClC-7 promotes greater acidification than Cl(-), K(+), or Na(+) channels. Our models predict strikingly different lysosomal K(+) dynamics depending on the major counterion pathways. However, given the lack of experimental data concerning acidification in vivo, the model cannot definitively rule out any given mechanism, but the model does provide concrete predictions for additional experiments that would clarify the identity of the counterion and its carrier.
溶酶体必须维持酸性的腔内 pH 值以激活水解酶并降解内化的大分子。酸化需要液泡型 H(+)-ATP 酶将质子泵入腔内,以及反离子流来中和质子积累产生的膜电位。早期的实验表明反离子是氯离子,最近发现了一种与 ClC-7 Cl(-)/H(+) 反向转运体一致的途径。然而,在 ClC-7 敲除小鼠中稳态腔内 pH 值不受影响的报道引发了关于载体和反离子身份的问题。在这里,我们测量了哺乳动物 ClC-7 反向转运体的电流-电压特性,并利用其转运特性以及其他关键的离子调节元件,构建了溶酶体 pH 调节的数学模型。我们表明,体外溶酶体实验的结果只能用 ClC-7 的存在来解释,而且 ClC-7 比 Cl(-)、K(+)或 Na(+)通道促进更大的酸化。我们的模型预测,根据主要的反离子途径,溶酶体中的 K(+)动力学有显著不同。然而,由于缺乏体内酸化的实验数据,该模型不能明确排除任何给定的机制,但该模型确实为澄清反离子及其载体的身份提供了具体的预测,以供进一步的实验验证。