Suppr超能文献

一种评估肌肉协同激活之间相关性对任务区分信息影响的方法。

A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information.

机构信息

Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy ; Communication, Computer and System Sciences Department, Doctoral School on Life and Humanoid Technologies, University of Genoa Genoa, Italy ; Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK.

出版信息

Front Comput Neurosci. 2013 May 13;7:54. doi: 10.3389/fncom.2013.00054. eCollection 2013.

Abstract

Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activations, which is designed to help to better understand how these correlations may contribute to generating appropriate motor behavior. The algorithm we propose first divides correlations between muscle synergies into types (noise correlations, quantifying the trial-to-trial covariations of synergy activations at fixed task, and signal correlations, quantifying the similarity of task tuning of the trial-averaged activation coefficients of different synergies), and then uses single-trial methods (task-decoding and information theory) to quantify their overall effect on the task-discriminating information carried by muscle synergy activations. We apply the method to both synchronous and time-varying synergies and exemplify it on electromyographic data recorded during performance of reaching movements in different directions. Our method reveals the robust presence of information-enhancing patterns of signal and noise correlations among pairs of synchronous synergies, and shows that they enhance by 9-15% (depending on the set of tasks) the task-discriminating information provided by the synergy decompositions. We suggest that the proposed methodology could be useful for assessing whether single-trial activations of one synergy depend on activations of other synergies and quantifying the effect of such dependences on the task-to-task differences in muscle activation patterns.

摘要

肌肉协同作用被假设为中枢神经系统生成运动的基本构建块。根据这一假设,各种运动任务的完成依赖于运动系统在单次试验的基础上招募一小部分协同作用,并以任务依赖的方式将它们组合在一起的能力。可以想象,这需要对协同作用激活之间的单次试验关系进行微调。在这里,我们开发了一种分析方法来解决协同作用激活之间单次试验相关性的性质和功能作用,旨在帮助更好地理解这些相关性如何有助于产生适当的运动行为。我们提出的算法首先将肌肉协同作用之间的相关性分为两种类型(噪声相关性,量化协同作用激活在固定任务中的单次试验变化;信号相关性,量化不同协同作用的平均激活系数的任务调谐相似性),然后使用单次试验方法(任务解码和信息论)来量化它们对肌肉协同作用激活所携带的任务区分信息的总体影响。我们将该方法应用于同步和时变协同作用,并以在不同方向进行运动时记录的肌电图数据为例进行说明。我们的方法揭示了同步协同作用对之间存在增强信息的信号和噪声相关性模式的稳健存在,并表明它们将协同作用分解提供的任务区分信息提高了 9-15%(取决于任务集)。我们建议,所提出的方法可用于评估一个协同作用的单次试验激活是否依赖于其他协同作用的激活,并量化这种依赖性对肌肉激活模式的任务间差异的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d31d/3652392/0c1538ff2003/fncom-07-00054-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验