Suppr超能文献

编织多电极探针:机械顺应特性和脊髓记录。

Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords.

机构信息

School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA, USA.

出版信息

J Neural Eng. 2013 Aug;10(4):045001. doi: 10.1088/1741-2560/10/4/045001. Epub 2013 May 31.

Abstract

OBJECTIVE

To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress.

APPROACH

We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals.

MAIN RESULTS

Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions.

SIGNIFICANCE

Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

摘要

目的

测试一种新型编织多电极探头设计,其顺应性超过 50µm 微丝,从而降低微运动和大运动引起的组织应力。

方法

我们使用多达 24 根超细金属丝编织成管状编织物,以获得高度灵活的多电极探头。系绳部分的金属丝只是编织结构的简单非编织延伸部分,允许微探头跟随大体神经组织运动。机械计算和直接测量评估了探头和系绳系统的弯曲刚度和轴向压缩力。将这些与 50µm 镍铬合金微丝标准进行了比较。记录测试在去大脑动物中进行。

主要结果

对包含 9.6 或 12.7µm 镍铬合金丝的编织物进行机械弯曲测试表明,植入物(编织部分)的机械顺应性比单根 50µm 金属丝好 4 到 21 倍,而非编织系绳的顺应性好 6 到 96 倍。编织微探头能够从动物脊髓的整个脊髓运动中产生稳健的神经记录。

意义

证明了能够记录和耐受脊髓组织微运动和大运动的微丝电极阵列。该技术可为自由运动动物的脊髓提供稳定的慢性神经接口,可扩展到各种应用,并可能减少机械组织应力。

相似文献

1
Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords.
J Neural Eng. 2013 Aug;10(4):045001. doi: 10.1088/1741-2560/10/4/045001. Epub 2013 May 31.
3
3D Parylene sheath neural probe for chronic recordings.
J Neural Eng. 2013 Aug;10(4):045002. doi: 10.1088/1741-2560/10/4/045002. Epub 2013 May 31.
4
A flexible base electrode array for intraspinal microstimulation.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2904-13. doi: 10.1109/TBME.2013.2265877. Epub 2013 Jun 5.
5
Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord.
J Neural Eng. 2015 Feb;12(1):016019. doi: 10.1088/1741-2560/12/1/016019. Epub 2015 Jan 21.
7
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.
8
Ceramic-based multisite electrode arrays for chronic single-neuron recording.
IEEE Trans Biomed Eng. 2004 Apr;51(4):647-56. doi: 10.1109/TBME.2003.821037.
9
A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord.
Biomed Microdevices. 2008 Apr;10(2):259-69. doi: 10.1007/s10544-007-9132-9.
10
Highly Flexible Precisely Braided Multielectrode Probes and Combinatorics for Future Neuroprostheses.
Front Neurosci. 2019 Jun 18;13:613. doi: 10.3389/fnins.2019.00613. eCollection 2019.

引用本文的文献

2
A Hyperflexible Electrode Array for Long-Term Recording and Decoding of Intraspinal Neuronal Activity.
Adv Sci (Weinh). 2023 Nov;10(33):e2303377. doi: 10.1002/advs.202303377. Epub 2023 Oct 23.
3
In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation.
Biomaterials. 2022 Oct;289:121784. doi: 10.1016/j.biomaterials.2022.121784. Epub 2022 Sep 2.
6
Highly Flexible Precisely Braided Multielectrode Probes and Combinatorics for Future Neuroprostheses.
Front Neurosci. 2019 Jun 18;13:613. doi: 10.3389/fnins.2019.00613. eCollection 2019.
8
A Mosquito Inspired Strategy to Implant Microprobes into the Brain.
Sci Rep. 2018 Jan 9;8(1):122. doi: 10.1038/s41598-017-18522-4.
9
Biological and bionic hands: natural neural coding and artificial perception.
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 19;370(1677):20140209. doi: 10.1098/rstb.2014.0209.

本文引用的文献

1
Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
J Neural Eng. 2011 Dec;8(6):066013. doi: 10.1088/1741-2560/8/6/066013. Epub 2011 Nov 8.
2
Creating low-impedance tetrodes by electroplating with additives.
Sens Actuators A Phys. 2009 Dec 1;156(2):388-393. doi: 10.1016/j.sna.2009.10.001.
3
Toward a comparison of microelectrodes for acute and chronic recordings.
Brain Res. 2009 Jul 28;1282:183-200. doi: 10.1016/j.brainres.2009.05.052. Epub 2009 May 30.
4
Bridging the brain to the world: a perspective on neural interface systems.
Neuron. 2008 Nov 6;60(3):511-21. doi: 10.1016/j.neuron.2008.10.037.
5
Carbon nanotube coating improves neuronal recordings.
Nat Nanotechnol. 2008 Jul;3(7):434-9. doi: 10.1038/nnano.2008.174. Epub 2008 Jun 29.
6
Cortical control of a prosthetic arm for self-feeding.
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
8
A benchtop system to assess cortical neural interface micromechanics.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1089-96. doi: 10.1109/TBME.2007.897139.
9
Neural probe design for reduced tissue encapsulation in CNS.
Biomaterials. 2007 Sep;28(25):3594-607. doi: 10.1016/j.biomaterials.2007.03.024. Epub 2007 Apr 5.
10
Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.
Brain Res. 2007 May 7;1148:15-27. doi: 10.1016/j.brainres.2007.02.024. Epub 2007 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验